✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
室内环境下高精度、鲁棒的机器人定位与建图(SLAM)一直是机器人领域研究的焦点和难点。传统的基于视觉、激光雷达等传感器的SLAM方法在光照变化、纹理缺失或动态障碍物等复杂室内场景下往往面临挑战。超宽带(UWB)雷达以其穿透性强、抗多径干扰能力好、定位精度高等特性,在室内定位领域展现出巨大的潜力。将UWB雷达应用于SLAM,利用其独特的感知能力,不仅能够克服传统传感器的部分局限性,更有望在室内环境中实现对自然点地标的有效感知与建图,并显著提升机器人的定位精度。本文旨在深入探讨扩展卡尔曼滤波器(EKF)在基于UWB雷达的SLAM系统中的应用,重点阐述其如何实现自然点地标的映射以及如何通过融合UWB测量信息来改善机器人自身的定位性能。
UWB雷达在SLAM中的优势与挑战
UWB雷达通过发射和接收极窄的脉冲信号,并测量信号在传播路径上的飞行时间(Time of Flight, TOF)或到达时间差(Time Difference of Arrival, TDOA)来确定目标的位置。与传统窄带信号相比,UWB信号具有以下显著优势,使其非常适合室内SLAM应用:
- 高距离分辨率:
极窄的脉冲使得UWB信号具有非常高的距离分辨率,即使在近距离内也能区分不同的目标,这对于识别和区分自然点地标至关重要。
- 穿透能力强:
UWB信号能够穿透非金属障碍物,例如墙壁、家具等,有效克服了视觉和激光雷达在遮挡环境下的局限性。
- 抗多径干扰:
极窄的脉冲持续时间使得UWB信号在多径环境中能够更清晰地分辨直达路径信号,有效抑制多径效应带来的定位误差。
- 低功耗:
UWB系统的功耗通常较低,有利于机器人长时间工作。
然而,将UWB雷达应用于SLAM也面临一些挑战:
- 信号处理复杂:
UWB信号的处理需要高带宽的采样和复杂的信号处理算法,以准确提取TOF或TDOA信息。
- 缺乏方向信息:
基础的UWB测距(TOF)通常只提供距离信息,缺乏方向信息,这使得在没有先验知识或额外传感器辅助的情况下,难以直接确定目标的准确位置。
- 自然点地标的识别与提取:
与人造地标(如RFID标签)不同,如何在复杂的室内环境中从UWB信号中有效识别和提取可重复观测的自然点地标是一个难题。自然点地标可以是墙角、门框、或其他能够产生稳定UWB反射或散射信号的物体。
- 数据关联问题:
在SLAM过程中,将当前的UWB测量与已知地标或潜在地标进行正确关联是保证定位和建图精度的关键,错误的关联会导致地图畸变和定位漂移。
扩展卡尔曼滤波器(EKF)在SLAM中的基本原理
扩展卡尔曼滤波器(EKF)是一种非线性系统的状态估计方法,其核心思想是在每个时间步长上对非线性系统进行线性化处理,然后应用标准的卡尔曼滤波器进行状态预测和更新。在基于UWB雷达的SLAM系统中,EKF通常用于估计机器人的状态(位置和姿态)以及已知地标的状态(位置)。
EKF-SLAM的基本框架包括以下步骤:
- 初始化:
初始化机器人的初始状态(位置和姿态)及其协方差矩阵,以及已知地标的初始状态及其协方差矩阵。如果初始时没有已知地标,则需要对观测到的潜在地标进行初始化。
- 预测:
根据机器人的运动模型(例如,基于轮式里程计或惯性测量单元IMU),预测机器人下一时刻的状态及其协方差矩阵。
- 观测:
利用UWB雷达对环境进行观测,获取到机器人与潜在自然点地标之间的距离测量。
- 数据关联:
将当前的UWB测量与地图中已知地标进行关联。如果测量与已知地标匹配,则进入更新阶段;如果测量与已知地标不匹配,但满足地标初始化的条件,则将其视为新的地标进行初始化。
- 更新:
利用观测到的UWB测量信息,通过EKF的更新步骤修正机器人的预测状态和协方差矩阵,以及相关地标的状态和协方差矩阵。
基于UWB雷达的EKF-SLAM中的自然点地标映射
基于UWB雷达的SLAM系统能否成功,很大程度上取决于能否有效地识别、初始化和管理自然点地标。与人造地标不同,自然点地标通常没有明确的标识,其位置需要通过UWB测量进行估计。EKF在地标映射中的作用体现在以下几个方面:
- 地标初始化:
当EKF接收到来自一个潜在自然点地标的首次UWB测量时,如果满足一定的条件(例如,多次稳定的观测),系统可以根据当前的机器人状态和UWB测量信息,通过三角定位或其他方法对该潜在地标的位置进行初步估计,并将其作为一个新的地标加入到EKF的状态向量中进行管理。
- 地标状态估计与更新:
一旦自然点地标被初始化,EKF会像处理机器人状态一样,对地标的状态(通常是其在地图坐标系下的位置)进行预测和更新。每次对该地标进行新的UWB测量时,EKF会根据测量值对地标的估计位置进行修正,同时减小其协方差,提高地标位置估计的精度。
- 地标协方差管理:
EKF会跟踪地标位置估计的协方差,反映估计的不确定性。随着对同一地标的多次观测,其协方差会逐渐减小,表明地标位置的估计越来越准确。
- 地标的维护与剔除:
在SLAM过程中,可能会出现一些不稳定或误识别的自然点地标。EKF可以通过监测地标的协方差或观测频率等指标,对不稳定的地标进行剔除,保持地图的准确性和效率。
基于UWB雷达的EKF-SLAM中改善机器人定位
UWB雷达的高精度测距能力是改善机器人定位的关键。EKF通过巧妙地融合UWB测量信息,能够显著提升机器人的定位精度和鲁棒性:
- 多传感器融合:
典型的基于UWB雷达的SLAM系统通常会融合其他传感器,例如轮式里程计、IMU、甚至视觉或激光雷达。EKF提供了一个强大的框架来融合这些不同来源的信息。例如,轮式里程计或IMU提供高频率的运动信息,用于机器人状态的预测;而UWB测量提供与地标的精确距离信息,用于校正预测的机器人位置,从而减小累积误差。
- 利用UWB测距进行位置修正:
当机器人观测到已知地标时,EKF会利用UWB测量的距离信息来计算机器人位置的预测与观测之间的残差。通过卡尔曼增益,这个残差会被用来修正机器人的预测位置和协方差。由于UWB测距精度较高,这种修正能够有效地抑制机器人状态估计的漂移。
- 构建稀疏但精确的地图:
通过对自然点地标的精确映射,EKF-SLAM能够构建一个包含少量但位置精确的自然点地标的稀疏地图。机器人通过对这些已知地标进行观测,即使在没有其他传感器信息的情况下,也能进行较为精确的定位。
- 提高在挑战性环境下的鲁棒性:
在光照变化大、纹理缺失或存在动态障碍物的环境中,视觉和激光雷达可能会失效。而UWB雷达的穿透性和抗干扰能力使其能够继续提供有效的距离测量,通过EKF的融合,系统能够在这些挑战性环境下保持较好的定位性能。
- 降低对初始位置的要求:
相比于一些依赖于初始地图或先验知识的SLAM方法,基于UWB雷达和EKF的SLAM系统可以在未知环境中进行自适应建图和定位,对初始位置的要求较低。
EKF-SLAM的局限性与未来研究方向
尽管EKF在基于UWB雷达的SLAM中取得了显著进展,但仍存在一些局限性:
- 非线性问题:
EKF采用线性化处理,当系统的非线性程度较高时,线性化误差可能导致滤波器发散。在复杂的室内环境下,机器人的运动和观测模型可能存在较强的非线性。
- 数据关联的挑战:
在环境中存在大量自然点地标时,正确的数据关联变得非常困难,错误的关联会导致EKF状态估计的错误甚至滤波器发散。
- 计算复杂度:
随着地图中地标数量的增加,EKF的状态向量维度会增加,导致计算复杂度增加,实时性受到影响。
- 对自然点地标的依赖:
基于自然点地标的SLAM系统性能很大程度上依赖于环境中存在足够数量且稳定的自然点地标。在一些地标稀疏或不稳定的环境中,性能可能会下降。
未来的研究方向可以包括:
- 改进非线性处理方法:
探索使用更先进的非线性状态估计算法,例如无迹卡尔曼滤波器(UKF)或粒子滤波器(PF),以更好地处理非线性问题。
- 鲁棒的数据关联算法:
开发更加鲁棒和高效的数据关联算法,例如概率数据关联或基于图优化的方法,以应对复杂环境下的关联挑战。
- 地标的智能识别与选择:
研究基于机器学习或其他高级信号处理技术,自动识别、分类和选择高质量的自然点地标,提高地标的稳定性。
- 结合其他感知模态:
进一步探索UWB雷达与其他传感器(如视觉、激光雷达、惯性传感器、磁场传感器等)的深度融合,利用各传感器的优势,构建更加鲁棒和精确的SLAM系统。
- 基于图优化的SLAM:
考虑将UWB测量信息融入基于图优化的SLAM框架中,利用其全局优化能力,克服EKF的累积误差问题。
结论
基于UWB雷达的SLAM系统利用EKF作为核心算法,在室内环境中展示了巨大的应用潜力。EKF通过对机器人状态和自然点地标状态进行有效估计和管理,实现了对室内环境中自然点地标的映射,构建了稀疏但精确的环境地图。同时,EKF巧妙地融合了UWB雷达高精度的距离测量信息,对机器人的运动预测进行有效的校正,显著提高了机器人的定位精度和鲁棒性,尤其在传统传感器受限的复杂室内环境下。尽管EKF-SLAM仍面临非线性、数据关联和计算复杂度等挑战,但随着对UWB信号处理、自然点地标识别与管理、以及多传感器融合技术的不断深入研究,基于UWB雷达的EKF-SLAM有望在未来室内机器人定位和导航领域发挥越来越重要的作用。这项技术不仅能够为智能制造、仓储物流、服务机器人等领域提供高精度定位能力,更能为构建智能化的室内空间奠定坚实基础。
⛳️ 运行结果
🔗 参考文献
[1] 闫潇,张洪顺,宋琦军,等.扩展卡尔曼滤波算法在UWB定位中的应用[J].通信对抗, 2009(1):3.DOI:JournalArticle/5af2e335c095d718d8ff852b.
[2] 苏翔.基于扩展卡尔曼滤波器的混合TDOA/AOA室内定位技术的研究[J].数字技术与应用, 2013(8):3.DOI:CNKI:SUN:SZJT.0.2013-08-037.
[3] 张恒.基于UWB的室内高精度定位方法研究与应用[D].辽宁工程技术大学,2015.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇