【SCI复现】【图像机密】基于超混沌系统和Fibonacci Q-矩阵的新型图像加密算法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着数字信息时代的飞速发展,图像作为一种重要的信息载体,在社会生产、科学研究、日常生活等各个领域扮演着愈发重要的角色。与此同时,图像信息的安全与保密问题也日益凸显。未经授权的访问、篡改或窃取可能导致严重的个人隐私泄露、商业机密损失甚至国家安全威胁。传统的加密算法,如DES、AES等,虽然在文本加密领域取得了显著成效,但由于图像数据具有高冗余性、高相关性和大容量的特点,直接应用于图像加密时效率较低,且对统计分析和差分分析等攻击的抵抗能力相对较弱。因此,研究和开发高效、安全的图像加密算法具有重要的理论意义和实际价值。

近年来,混沌系统因其固有的对初值敏感性、遍历性、伪随机性等特性,被广泛应用于图像加密领域。混沌序列具有类噪声的特性,能够有效打乱图像像素的位置和灰度值,从而增强加密算法的混乱和扩散能力。传统的低维混沌系统,如Logistic映射、Henon映射等,由于其相对简单的结构和有限的密钥空间,容易遭受相空间重构、周期性检测等攻击。相比之下,超混沌系统由于具有更多的正Lyapunov指数,表现出更复杂的动力学行为,能够生成更长周期、更复杂的混沌序列,从而有效增强加密算法的安全性。

另一方面,Fibonacci序列作为一种经典的数学序列,具有独特的生成规律和性质。其与Q-矩阵的关联则进一步揭示了其代数结构和递推关系。Fibonacci Q-矩阵是一种特殊的矩阵,通过其幂运算可以高效地生成Fibonacci序列。将Fibonacci Q-矩阵的特性融入到图像加密算法中,可以为加密过程引入新的扰乱机制,例如通过Q-矩阵的幂次或与其他矩阵的运算来改变像素值或位置,从而增加加密算法的复杂度和非线性性。

本文旨在对一篇关于“基于超混沌系统和Fibonacci Q-矩阵的新型图像加密算法”的SCI论文进行复现和深入分析。我们将详细探讨该算法的核心思想、关键步骤以及其在图像加密安全性能方面的表现。通过对该算法的复现研究,旨在加深对基于混沌和矩阵理论的图像加密算法的理解,并为未来的相关研究提供参考。

算法概述与理论基础

该新型图像加密算法的核心思想是利用超混沌系统的复杂动力学行为生成伪随机序列,用于扰乱图像像素的位置和灰度值,同时结合Fibonacci Q-矩阵的特性引入额外的扰乱机制,进一步增强加密算法的安全性。算法通常包括以下几个主要阶段:

  1. 密钥生成与初始化: 根据用户提供的密钥,初始化超混沌系统的初始状态和参数,以及Fibonacci Q-矩阵相关的参数。密钥的安全性直接影响整个加密系统的安全性,因此需要采用足够长的密钥,并确保其随机性。

  2. 超混沌系统生成混沌序列: 根据初始状态和参数,迭代运行超混沌系统,生成一系列伪随机序列。常用的超混沌系统包括Chen超混沌系统、Lorenz超混沌系统等。这些序列通常被量化或处理后用于后续的置乱和扩散过程。例如,可以根据混沌序列的值生成置换索引,用于打乱图像像素的位置;或者根据混沌序列的值与图像像素进行异或运算,用于改变像素的灰度值。

  3. 基于Fibonacci Q-矩阵的扰乱: 这一阶段是该算法的创新之处。可以将Fibonacci Q-矩阵的性质融入到图像的置乱或扩散过程中。具体方法可能包括:

    • 基于Q-矩阵的像素位置置乱:

       可以通过Fibonacci序列或与Q-矩阵相关的运算来生成置换索引,对图像像素进行置乱。

    • 基于Q-矩阵的像素值扩散:

       可以利用Fibonacci序列的生成特性或Q-矩阵的元素与其他矩阵运算的结果来改变像素的灰度值,实现像素值的扩散。

  4. 置乱与扩散: 利用生成的混沌序列和Fibonacci Q-矩阵相关的扰乱机制,对图像像素进行置乱和扩散操作。置乱旨在改变像素的空间位置,打乱像素之间的相关性;扩散旨在改变像素的灰度值,使单个像素值的变化能够影响多个其他像素,从而抵抗差分攻击。通常,置乱和扩散操作会交替进行多次,以增强加密效果。

  5. 加密完成: 经过多轮置乱和扩散后,原始图像被转换为加密图像。

其理论基础主要包括:

  • 混沌理论:

     利用混沌系统的对初值敏感性、遍历性、伪随机性等特性,生成具有良好统计特性的伪随机序列,用于图像加密。

  • 超混沌理论:

     相比低维混沌系统,超混沌系统具有更复杂的动力学行为和更高的安全性。

  • Fibonacci序列与Q-矩阵:

     利用Fibonacci序列的生成规律和Q-矩阵的性质,为加密算法引入新的扰乱机制,增加算法的复杂度和安全性。

  • 置乱与扩散原理:

     图像加密的核心操作,通过改变像素位置和灰度值来破坏图像数据的相关性,提高加密强度。

算法复现与关键步骤解析

复现该算法需要深入理解论文中描述的具体数学模型、参数设置以及各步骤的详细实现过程。以下是一些关键步骤及其在复现过程中需要注意的问题:

  1. 超混沌系统的选择与实现: 选择论文中使用的具体超混沌系统(如Chen超混沌系统)。需要准确实现其数学模型,包括微分方程或迭代方程。注意初值敏感性,初始值的小微扰动会导致序列的巨大差异,这是加密安全性的基础。在编程实现时,需要选择合适的数值计算方法(如龙格-库塔法)来求解微分方程,并注意浮点数的精度问题。

  2. Fibonacci Q-矩阵的构建与运算: 理解Fibonacci Q-矩阵的定义及其与Fibonacci序列的关系。需要实现矩阵的构建以及相关的运算,如矩阵乘法、矩阵幂等。如何将Q-矩阵的特性应用于图像的置乱或扩散是算法设计的关键。论文中可能会详细描述具体的应用方式,例如基于Q-矩阵的幂次生成用于置乱的置换表,或者利用Q-矩阵元素与其他像素值进行运算。

  3. 混沌序列的处理与应用: 超混沌系统生成的序列通常是连续的实数值。需要根据算法设计对其进行量化、归一化或取模等处理,以生成适用于图像加密操作的整数序列。例如,可以将混沌序列的值映射到图像的尺寸范围内,用于生成置换索引;或者将其映射到0-255的灰度值范围内,用于与像素值进行异或运算。

  4. 置乱与扩散的实现: 根据论文中描述的置乱和扩散策略,编写相应的代码。置乱通常通过构建置换表来实现,根据混沌序列的值生成像素的新位置。扩散通常通过与混沌序列进行异或、加减等运算来改变像素的灰度值。注意置乱和扩散的顺序以及迭代次数,这会显著影响加密效果。

  5. 解密过程的实现: 加密算法必须是可逆的,因此需要实现相应的解密算法。解密过程通常是加密过程的逆操作。例如,扩散的逆操作是相同的运算,置乱的逆操作是根据相同的置换表进行逆置换。解密时,需要使用相同的密钥来初始化超混沌系统和Fibonacci Q-矩阵,并生成与加密时相同的混沌序列和扰乱机制。

  6. 实验环境与数据集: 复现时需要搭建相应的编程环境(如MATLAB、Python等),并准备用于实验的图像数据集。常用的数据集包括标准灰度图像(如Lenna、Baboon等)和彩色图像。

  7. 性能评估指标: 复现完成后,需要使用论文中提及的性能评估指标来衡量算法的安全性。常用的图像加密算法性能评估指标包括:

    • 直方图分析:

       对加密图像的直方图进行分析,观察其均匀性。安全的加密算法应该使加密图像的直方图接近均匀分布,从而抵抗统计分析攻击。

    • 相关性分析:

       计算加密图像中相邻像素(水平、垂直、对角线)之间的相关系数。安全的加密算法应该显著降低像素之间的相关性。

    • 密钥空间分析:

       计算算法的密钥空间大小。密钥空间越大,暴力破解的难度越高。

    • 密钥敏感性分析:

       验证密钥的微小变化是否能够导致加密图像的巨大差异。

    • 差分攻击分析(NPCR和UACI):

       计算改变原始图像一个像素后,加密图像的像素平均变化率(NPCR)和统一平均变化强度(UACI)。NPCR和UACI值越高,算法抵抗差分攻击的能力越强。

    • 剪切攻击和噪声攻击分析:

       评估加密算法在遭受剪切和噪声攻击后的鲁棒性。

在复现过程中,可能会遇到一些挑战,例如论文中可能存在一些细节未 fully 公开,需要根据上下文进行推测和尝试;或者数值计算精度问题可能导致复现结果与论文存在微小差异。此时,需要仔细分析原因,并进行相应的调整。

算法的优缺点分析

通过对该算法的复现研究,可以对其优点和潜在的缺点进行分析:

优点:

  • 高安全性:

     结合超混沌系统的复杂性和Fibonacci Q-矩阵的特殊性质,算法能够生成高度复杂的混沌序列和扰乱机制,从而有效抵抗多种攻击。超混沌系统提供更强的伪随机性和更长的周期,Fibonacci Q-矩阵引入新的代数结构和递推关系,共同增强算法的安全性。

  • 高效率:

     尽管涉及复杂的数学运算,但通过合理的算法设计和优化,可以实现相对较高的加密和解密速度。特别是在图像处理中,矩阵运算可以通过并行计算等方式进行加速。

  • 大密钥空间:

     基于超混沌系统和可能与Q-矩阵相关的参数,可以设计出具有足够大密钥空间的加密算法,从而有效抵抗暴力破解攻击。

  • 良好的统计特性:

     算法能够有效打乱图像像素的统计特性,使加密图像的直方图趋于均匀分布,并显著降低像素之间的相关性,从而抵抗统计分析攻击。

  • 对差分攻击的抵抗能力:

     通过有效的置乱和扩散机制,算法能够使原始图像的微小变化导致加密图像的巨大变化,从而有效抵抗差分攻击。

潜在的缺点:

  • 算法复杂度:

     相比简单的加密算法,该算法涉及超混沌系统的迭代和Fibonacci Q-矩阵相关的运算,计算复杂度相对较高,可能影响在某些资源受限环境下的应用。

  • 参数敏感性:

     超混沌系统的行为对参数非常敏感,参数选择不当可能导致混沌退化或周期性行为,影响算法的安全性。Fibonacci Q-矩阵相关的参数也需要仔细选择。

  • 实现难度:

     相比简单的图像加密方法,该算法涉及更复杂的数学模型和编程实现,对开发者的数学基础和编程能力要求较高。

  • 潜在的弱点:

     尽管超混沌系统和Fibonacci Q-矩阵都具有复杂的性质,但如果其与加密过程的结合方式存在设计缺陷,仍然可能存在潜在的弱点被攻击者利用。

结论

本文对一篇关于“基于超混沌系统和Fibonacci Q-矩阵的新型图像加密算法”的SCI论文进行了复现研究和深入分析。该算法巧妙地结合了超混沌系统的复杂动力学行为和Fibonacci Q-矩阵的独特性质,为图像加密提供了一种新的思路。通过超混沌系统生成伪随机序列,用于图像像素的置乱和扩散,同时利用Fibonacci Q-矩阵引入额外的扰乱机制,共同增强了加密算法的安全性。

复现研究表明,该算法在理论上具有较高的安全性,能够有效抵抗统计分析、相关性分析和差分攻击等。其优点在于高安全性、潜在的高效率和大密钥空间。然而,算法的复杂性、参数敏感性和实现难度是需要考虑的因素。

未来的研究可以从以下几个方面展开:进一步优化算法的计算效率,使其更适合实时图像加密应用;深入研究算法的数学原理,探索是否存在潜在的弱点并加以改进;尝试将该算法与其他先进的加密技术相结合,构建更强大的图像加密系统;以及针对不同类型的图像数据(如彩色图像、视频图像)进行算法的适配和优化。

⛳️ 运行结果

图片

🔗 参考文献

[1] 李玲,王伟男,李津杰,等.基于Logistic映射和超混沌的自适应图像加密算法[J].微电子学与计算机, 2012, 29(1):5.DOI:CNKI:SUN:WXYJ.0.2012-01-012.

[2] 刘云,郑永爱,莫丽丽.基于超混沌系统的图像加密方案[J].中南大学学报:自然科学版, 2009(S1):6.DOI:CNKI:SUN:ZNGD.0.2009-S1-021.

[3] 郭祖华,徐立新,张晓.并行图像耦合超混沌系统的图像加密算法[J].计算机工程与设计, 2015, 36(5):6.DOI:10.16208/j.issn1000-7024.2015.05.011.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值