✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在现代控制理论与系统辨识领域,准确获取动态系统的数学模型是进行有效分析、设计和控制的前提。参数辨识作为一项关键任务,旨在通过观测系统的输入输出数据,或仅凭系统在自然激励下的响应数据,来确定系统的内部结构和参数。在诸多辨识方法中,随机子空间辨识(Stochastic Subspace Identification,SSI)凭借其处理多输入多输出(MIMO)系统、能够直接辨识状态空间模型以及对噪声具有较好的鲁棒性等优点,在工程实践中得到了广泛应用,尤其是在结构健康监测、模态分析和振动控制等领域。
本文旨在对随机子空间辨识方法进行深入探讨,阐述其基本原理、核心算法及其在实际应用中的优势与挑战。我们将从随机系统的建模出发,引出子空间辨识的理论基础,并详细介绍 SSI 的主要算法流程,最后分析其在实际应用中的特点和潜在的改进方向。
1. 随机系统的建模与子空间理论基础
与传统的基于输入输出数据的辨识方法(如最小二乘法、最大似然法)不同,随机子空间辨识主要针对的是在环境激励下(如风载、海浪、交通荷载等)自由响应的随机系统。这类系统通常缺乏可控的输入信号,其输出响应主要由系统的内部动力学特性以及外部随机激励共同决定。因此,建立一个能够描述这种随机特性的数学模型至关重要。
随机系统的常用模型是离散时间线性时不变(LTI)状态空间模型,其形式如下:
xk+1=Axk+wk
随机子空间辨识的核心思想是利用输出数据的协方差信息来构造一个数据驱动的 Hankel 矩阵。Hankel 矩阵的结构与系统的状态空间模型之间存在着紧密的联系,通过对 Hankel 矩阵进行奇异值分解(Singular Value Decomposition,SVD),可以揭示系统的可观测子空间。进一步,通过分析不同时滞下的 Hankel 矩阵,可以从可观测子空间中提取出系统的动力学参数 AA 和 CC。
理论上,一个足够大的 Hankel 矩阵可以通过系统的脉冲响应序列来构建,而对于随机系统,脉冲响应与系统的协方差函数存在着紧密联系。子空间辨识方法正是巧妙地利用了这种联系,避免了直接估计脉冲响应的复杂性。
2. 随机子空间辨识的主要算法流程
随机子空间辨识方法存在多种变体,但其核心流程通常包括以下几个主要步骤:
2.1 数据准备与分块
首先,将采集到的输出数据 ykyk 进行适当的预处理,例如去均值、滤波等。然后,将输出数据按照一定的时间窗口进行分块,构建数据 Hankel 矩阵。常见的构建方式是将数据分为“过去”块和“未来”块:
Yp=[y1y2⋮yi],Yf=[yi+1yi+2⋮yi+j然后构建一个大的数据 Hankel 矩阵,将系统的过去输出和未来输出组织在一起。例如,可以构建一个块 Hankel 矩阵 H
2.2 数据矩阵的投影
在实际应用中,为了避免矩阵求逆,通常采用更数值稳定的方法,例如利用 QR 分解或 SVD。
另一种常用的投影方法是基于数据的扩展可观测性矩阵和扩展可控性矩阵的思想,将数据矩阵分解为与系统状态和噪声相关的部分。通过适当的投影,可以分离出与系统状态相关的子空间。
2.3 奇异值分解与系统阶数估计
对投影后的数据矩阵进行奇异值分解是 SSI 方法的核心步骤之一。投影后的矩阵包含了系统可观测性矩阵和状态协方差矩阵的信息。对该矩阵进行 SVD 可以得到其奇异值和奇异向量。
2.4 状态空间矩阵的提取
在确定了系统的阶数 nn 之后,可以从奇异值分解的结果中提取与系统状态空间模型相关的矩阵。具体方法因不同的 SSI 算法变体而异。
2.5 模型构建与验证
在提取了状态空间矩阵 AA 和 CC 后,就得到了辨识出的系统状态空间模型。对于随机系统,过程噪声和测量噪声的协方差矩阵也可以通过进一步的计算得到。
辨识出的模型需要进行验证,以评估其准确性。常用的验证方法包括:
- 模态分析:
计算辨识模型的状态转移矩阵的特征值,提取系统的固有频率和阻尼比,并与经验值或理论值进行比较。
- 输出预测:
利用辨识模型预测系统的未来输出,并与实际观测数据进行比较。
- 残差分析:
分析模型预测输出与实际输出之间的残差,评估模型的拟合优度。
3. 随机子空间辨识方法的优势
随机子空间辨识方法在实际应用中展现出诸多优势:
- 直接辨识状态空间模型:
与许多基于输入输出模型的辨识方法不同,SSI 直接辨识系统的状态空间模型,这对于进行基于状态反馈的控制器设计以及系统状态估计非常有利。
- 适用于 MIMO 系统:
SSI 方法可以自然地处理多输入多输出系统,无需将其分解为多个 SISO 系统进行辨识。
- 对噪声具有较好的鲁棒性:
通过利用协方差信息和投影技术,SSI 方法能够有效地抑制测量噪声和过程噪声的影响,从而获得更准确的辨识结果。
- 计算效率高:
基于奇异值分解等线性代数运算,SSI 算法的计算效率相对较高,适用于处理大规模数据。
- 无需先验模型结构信息:
SSI 方法是数据驱动的,不需要事先假设系统的具体模型结构,只需根据数据进行辨识。
4. 随机子空间辨识方法的挑战与改进方向
尽管 SSI 方法具有显著优势,但也存在一些挑战和潜在的改进方向:
- 系统阶数的确定:
系统阶数的准确估计对辨识结果至关重要,但实际应用中,奇异值的截断往往依赖于经验判断,存在一定的主观性。发展更鲁棒和自动化的阶数估计方法是一个重要的研究方向。
- 数据长度的要求:
SSI 方法需要足够长的输出数据才能准确地估计协方差信息,数据长度不足可能导致辨识精度下降。
- 非线性系统辨识:
SSI 方法主要针对线性系统,对于非线性系统,其适用性受到限制。发展能够处理非线性随机系统的子空间辨识方法是一个前沿研究领域。
- 计算复杂性:
对于非常大规模的系统或非常长的数据序列,构建和分解大型 Hankel 矩阵的计算负担仍然可能很高。研究更高效的算法或利用分布式计算技术是重要的方向。
- 噪声模型假设:
SSI 方法通常假设过程噪声和测量噪声是白噪声,当噪声具有其他统计特性时,辨识结果可能会受到影响。研究能够处理更一般噪声模型的 SSI 方法具有实际意义。
- 实时辨识:
在一些应用场景,例如在线监测,需要进行实时或准实时辨识。传统的 SSI 方法通常是离线处理的,发展在线 SSI 算法是一个挑战。
5. 结论
随机子空间辨识(SSI)作为一种强大的参数辨识技术,在处理随机激励下的线性系统辨识方面展现出显著的优越性。其基于输出数据协方差信息,通过子空间投影和奇异值分解等技术,能够直接辨识系统的状态空间模型,且对噪声具有较好的鲁棒性。这使得 SSI 方法在结构健康监测、模态分析等领域得到了广泛应用。
然而,SSI 方法在系统阶数确定、数据长度要求、非线性系统处理等方面仍面临挑战,需要进一步深入研究和改进。未来的研究方向可以包括开发更智能化的阶数估计方法、拓展 SSI 方法处理非线性系统和更一般噪声模型的能力、以及提高算法的计算效率和实现实时辨识。
⛳️ 运行结果
🔗 参考文献
[1] 禹丹江,任伟新.基于经验模式分解的随机子空间识别方法[J].地震工程与工程振动, 2005, 25(5):6.DOI:CNKI:SUN:DGGC.0.2005-05-009.
[2] 肖祥,任伟新.实时工作模态参数数据驱动随机子空间识别[J].振动与冲击, 2009, 28(8):6.DOI:10.3969/j.issn.1000-3835.2009.08.034.
[3] 赵妍,李志民,李天云.低频振荡模态参数辨识的共振稀疏分解SSI分析方法[J].电工技术学报, 2016, 31(2):9.DOI:10.3969/j.issn.1000-6753.2016.02.018.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇