这段代码定义了一个函数 TOLDI_LRF_Z_axis
,该函数用于计算点云数据中Z轴的主方向(或法线方向)。以下是该函数的逐行解释:
-
函数定义:
void TOLDI_LRF_Z_axis(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, Vertex& z_axis) |
定义了一个名为 TOLDI_LRF_Z_axis
的函数,该函数接受一个 pcl::PointCloud<pcl::PointXYZ>::Ptr
类型的点云指针和一个 Vertex
类型的引用 z_axis
。Vertex
可能是一个自定义的类,用于存储三维坐标。
2. 初始化:
int i; | |
pcl::PointXYZ query_point = cloud->points[0]; |
定义一个整数 i
用于循环,并初始化一个查询点 query_point
为点云中的第一个点。
3. 计算质心和协方差矩阵
Eigen::Matrix3f Cov; | |
Eigen::Vector4f centroid; | |
pcl::compute3DCentroid(*cloud, centroid); | |
pcl::computeCovarianceMatrix(*cloud, centroid, Cov); |
使用PCL库中的函数计算点云的质心和协方差矩阵。注意,虽然 centroid
是 Eigen::Vector4f
类型,但通常我们只使用前三个分量(x, y, z)。
4. 特征值和特征向量的计算:
EIGEN_ALIGN16 Eigen::Vector3f::Scalar eigen_min; | |
EIGEN_ALIGN16 Eigen::Vector3f normal; | |
pcl::eigen33(Cov, eigen_min, normal); |
使用PCL库中的 eigen33
函数计算协方差矩阵的最小特征值(但这里并没有直接使用这个值)和对应的特征向量 normal
。这个特征向量代表了点云的主要方向。
5. 存储特征向量为Z轴方向:
z_axis.x = normal(0); | |
z_axis.y = normal(1); | |
z_axis.z = normal(2); |
将计算得到的特征向量(即法线)的x, y, z分量存储到 z_axis
中。
6. 解决Z轴方向的二义性:
float z_sign = 0; | |
// ... [循环内部计算] ... | |
if (z_sign < 0) | |
{ | |
// 反转z_axis的方向 | |
} |
这里,z_sign
用于确定 z_axis
的方向。通过遍历点云中的每个点并计算查询点与这些点之间的向量与 z_axis
的点积之和,可以决定 z_axis
的方向。如果 z_sign
小于0,则反转 z_axis
的方向。
循环内部:
for (i = 0; i < cloud->points.size(); i++) | |
{ | |
// ... [计算vec_x, vec_y, vec_z] ... | |
z_sign += (vec_x * z_axis.x + vec_y * z_axis.y + vec_z * z_axis.z); | |
} |
这里计算查询点与点云中每个点之间的向量,并计算这个向量与 z_axis
的点积之和。
注意:虽然这里使用了查询点 query_point
初始化为点云中的第一个点,但在后续的循环中并没有真正使用它来计算与点云中其他点的关系。如果 query_point
需要是特定的点(例如,点云的中心或某个特定的点),那么可能需要相应地修改代码。