代码解析1

这段代码定义了一个函数 TOLDI_LRF_Z_axis,该函数用于计算点云数据中Z轴的主方向(或法线方向)。以下是该函数的逐行解释:

  1. 函数定义:

void TOLDI_LRF_Z_axis(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, Vertex& z_axis)

定义了一个名为 TOLDI_LRF_Z_axis 的函数,该函数接受一个 pcl::PointCloud<pcl::PointXYZ>::Ptr 类型的点云指针和一个 Vertex 类型的引用 z_axisVertex 可能是一个自定义的类,用于存储三维坐标。
2. 初始化:

int i;
pcl::PointXYZ query_point = cloud->points[0];

定义一个整数 i 用于循环,并初始化一个查询点 query_point 为点云中的第一个点。
3. 计算质心和协方差矩阵

Eigen::Matrix3f Cov;
Eigen::Vector4f centroid;
pcl::compute3DCentroid(*cloud, centroid);
pcl::computeCovarianceMatrix(*cloud, centroid, Cov);

使用PCL库中的函数计算点云的质心和协方差矩阵。注意,虽然 centroid 是 Eigen::Vector4f 类型,但通常我们只使用前三个分量(x, y, z)。
4. 特征值和特征向量的计算:

EIGEN_ALIGN16 Eigen::Vector3f::Scalar eigen_min;
EIGEN_ALIGN16 Eigen::Vector3f normal;
pcl::eigen33(Cov, eigen_min, normal);

使用PCL库中的 eigen33 函数计算协方差矩阵的最小特征值(但这里并没有直接使用这个值)和对应的特征向量 normal。这个特征向量代表了点云的主要方向。
5. 存储特征向量为Z轴方向:

z_axis.x = normal(0);
z_axis.y = normal(1);
z_axis.z = normal(2);

将计算得到的特征向量(即法线)的x, y, z分量存储到 z_axis 中。
6. 解决Z轴方向的二义性:

float z_sign = 0;
// ... [循环内部计算] ...
if (z_sign < 0)
{
// 反转z_axis的方向
}

这里,z_sign 用于确定 z_axis 的方向。通过遍历点云中的每个点并计算查询点与这些点之间的向量与 z_axis 的点积之和,可以决定 z_axis 的方向。如果 z_sign 小于0,则反转 z_axis 的方向。

循环内部:

for (i = 0; i < cloud->points.size(); i++)
{
// ... [计算vec_x, vec_y, vec_z] ...
z_sign += (vec_x * z_axis.x + vec_y * z_axis.y + vec_z * z_axis.z);
}

这里计算查询点与点云中每个点之间的向量,并计算这个向量与 z_axis 的点积之和。

注意:虽然这里使用了查询点 query_point 初始化为点云中的第一个点,但在后续的循环中并没有真正使用它来计算与点云中其他点的关系。如果 query_point 需要是特定的点(例如,点云的中心或某个特定的点),那么可能需要相应地修改代码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值