数字电路——触发器1(RS和钟控触发器)

触发器能够存储一位二进制信息的基本单元电路称触发器(Flip-Flop)

特点:

  1. 具有两个能自行保持的稳定状态,用来表示逻辑状态的01”。
  2. 具有一对互补输出。
  3. 有一组控制(激励、驱动)输入。
  4. 或许有定时(时钟)CP(Clock Pulse)。
  5. 在输入信号消失后,电路能将获得的新状态保存下来
  6. 触发器接收输入信号之前的状态叫做现态,用Qn表示。触发器接收输入信号之后的状态叫做次态,用Qn+1表示

空翻在一个时钟周期内触发器状态多次翻转的现象被称为空翻

一、RS触发器

1.1 与非门构成的触发器

1.电路结构

2.状态转化表

0与任何数相与都是0,即0&X=0,所以0与任何数经过与非门之后都得到1

\bar{S}\bar{R}同时为0时,{\bar{Q}}^{n+1}Q^{n+1}Q^{n}无关,输出恒为1,而一个数与它的非不会相等,所以此时被禁用

1与任何数经过与非门之后,得到的数是本身的相反数

\bar{S}\bar{R}同时为1时,Q^{n+1}{\bar{Q}}^{n}取反,所以Q^{n+1}=Q^{n},同理,{\bar{Q}}^{n+1}={\bar{Q}}^{n},表现在电路上就是保持电位。

\bar{S}=0,\bar{R}=1时,Q^{n+1}=1,表现为电路置位

\bar{S}=1,\bar{R}=0时,Q^{n+1}=0,表现为电路复位

3.特征方程

根据卡诺图写出化简后的公式

Q^{n+1}=S+\bar{R}Q^{n}\bar{S}+\bar{R}=1,即\bar{S}\bar{R}不能同时为0)

4.时序图

1.2 或非门构成的R-S触发器

1.电路结构

2.状态转化表

类比于与非门R-S可得状态转化表

3.特征方程

根据卡诺图写出化简后的公式

Q^{n+1}=S+\bar{R}Q^{n}(S*R=0,即S和R不能同时为1)

4.时序图

RS触发器总结

与非门或非门构成的RS触发器的特征方程:Q^{n+1}=S+\bar{R}Q^{n}

问题:(1)存在约束条件的限制;
⑵没有时钟信号,无法与其他部件同步工作。

所以引入时钟信号,这样就可以控制多长时间采集一次数据

二、钟控触发器

2.1 钟控RS触发器

加入时钟信号CP(Clock Pulse),当CP=0时,\bar{S}\bar{R}都为1,电路状态不变。

也就是说钟控RS触发器在CP为1时采集信号,CP=0时不采集

1.电路结构

2.状态转化表

CP=0时,此时的输出与或非门RS触发器的状态转化表一样。

3.特征方程

Q^{n+1}=S+\bar{R}Q^{n}(S*R=0,SR同时为1时,两端都输出1)

4.状态图

5.问题

(1)仍然存在约束条件。
(2)在CP=1期间,只要R、S稍有变化,那么Q端也随之变化,存在“空翻”问题。

2.2 钟控RS触发器

 CP=0时,G7和G8都为1,与R和S的输入无关,{Q}'电路状态不变

1.电路结构

2.状态转化表

3.特征方程

Q^{n+1}=S+\bar{R}Q^{n}(S*R=0,SR同时为1时,两端都输出1)

4.时序图

在CP从1变到0时,\bar{CP}=1,{Q}'才传送到了从触发器,也就是说,在一个CP周期内,RS不变,此时就解决了空翻问题

2.3 D触发器

1.电路结构

2.状态转化

CP=0时,G3和G4为1,Q^{n+1}=Q^{n}

CP=1时,
D=0时,G3=1,G4=0,Q^{n+1}=0
D=1时,G3=0,G4=1,Q^{n+1}=1

3.特征方程

Q^{n+1}={D}(这时就没有了约束条件)

4.存在的问题

(1)存在“空翻”问题;
(2)只有一个输入端,逻辑功能简单。

2.4 维持阻塞D触发器

1.电路结构

2.状态转化表

CP=0时,G3=G4=1:Q^{n+1}=Q^{n}
D=0时,G6=1,G5=0;
D=1时,G6=0,G5=1

CP=1时,
D=0时,G6=1,G4=0,G5=0,G3=1;Q^{n+1}=0
D=1时,G6=0,G4=1,G5=1,G3=0;Q^{n+1}=1

所以,只有在上升沿的时候才检测D信号,避免了空翻问题

3.特征方程

Q^{n+1}={D}

4.状态图

2.5 JK触发器

相较于之前的最大特点就是加入反馈,以此消除钟控RS的约束;
而且之前的禁用情况变为了翻转

1.电路结构

CP=0时,电路状态保持不变

2.状态转化表

3.特征方程

Q^{n+1}={J}\bar{Q}^{n}+{K}Q^{n}

4.存在的问题

还是会空翻,为了消除空翻,引出主从JK触发器

2.6 主从JK触发器

1.电路结构

2.状态转化表

3.特征方程

Q^{n+1}={J}\bar{Q}^{n}+{K}Q^{n}

4.状态图

Q^{n}=0时,只要J=1就可以使Q^{n+1}=1,其他情况状态不变

Q^{n}=1时,只要K=1就可以使Q^{n+1}=0

5.特点

(1)有时钟信号,可以同步工作;
(2)没有约束条件;
(3)有两个输入端;
(4)解决了“空翻”问题。


但存在的问题是一次性变化问题CP1期间,主触发器仅能翻转一次


原因:状态互补的QQ分别引回了门G7G8的输入,使门G7G8总有一个是被封锁的

当Q=1时,由于\bar{Q}=0,所以J端不起作用,
若K=1,则{\bar{Q}}'=1{Q}'=0;若K=0,则G7=G8=1,{\bar{Q}'}{Q}'状态保持不变

在CP从“1”变为“0”后,主触发器的状态传送到从触发器

由于一次性变化问题,倘若在CP=1期间,叠加在JK上面的干扰信号引起一次变化,那么将造成触发器的错误翻转。所以由 边沿型JK触发器代替主从JK触发器。

6.时序图

上升沿接收,每一次下降沿采集数据,00保持,01置0,10置1,11翻转

2.7 边沿型JK触发器

1.电路结构

CP=0时,G1,G1,G3,G6被封锁,\bar{S}=\bar{R}=1,所以Q^{n+1}=Q^{n}

CP=1时,

触发器处于自锁状态,所以Q^{n+1}=Q^{n}

CP从0变1,即CP上升沿时,触发器由保持状态不变进入自锁状态,所以Q^{n+1}=Q^{n}

CP从1变0,即CP下降沿时,G3、G6输出0,触发器解除自锁状态虽然G1、G2由于CP从1变0而被封锁,但其输出端S、R要经过一个与非门延迟才能变为1,所以在解除自锁的一刻,被基本RS触发器接收的R、S仍为CP下降沿到来之前的值,即:\bar{R}=\bar{K Q^{n}}\bar{S}=\bar{J \bar{Q}^{n}}

2.状态简化表

00保持,01置0,10置1,11翻转

3.特征方程

Q^{n+1}={J}\bar{Q}^{n}+{K}Q^{n}

4.状态图

同JK触发器相同,Q^{n}由0变1需要J=1,由1变0需要K=1

5.时序图

下降沿时采集JK信号,

边沿型JK触发器不仅囊括了主从JK触发器的优点,

可以看到CP=1期间的信号震荡不会影响结果,解决了主从JK触发器震荡导致一次性变化,造成触发器的错误翻转的问题。

三、总结

  1. 去除约束条件,有两种方案:D触发器和JK触发器
  2. 如果想要解决空翻问题,使触发器变为主从触发器(维持阻塞D触发器的结构也类似于主从触发器)
  3. 对于主从JK触发器的一次性变化问题,使用边沿JK触发器(利用或非门避免产生一次性变化问题

<think>嗯,用户想了解RS触发器的原理、结构工作机制。首先,我需要回忆一下RS触发器的基本知识。RS触发器数字电路中最基本的触发器之一,通常由两个逻辑门构成,比如与非门或者或非门。根据用户提供的引用,基本RS触发器有两种实现方式:使用与非门或者或非门,并且结构上有不同的画法。 用户提到了引用[1]引用[2],其中引用[1]提到基本RS触发器由两个与非门或两个或非门构成,正反馈闭合,也称为闩锁触发器。引用[2]则指出当RS端同时输入有效信号时,输出状态不确定,需要避免这种情况。这些信息需要整合到回答中。 接下来,我需要解释RS触发器的结构,可能需要画图,但在这里只能用文字描述。例如,与非门构成的RS触发器,每个门的输出连接到另一个门的输入,形成交叉耦合。RS是输入端,QQ非是输出端。然后要说明真值表,不同的输入组合对应的输出状态。 然后,工作机制部分需要分情况讨论:置位、复位、保持禁用状态。特别是当RS同时有效时的问题,比如与非门构成的触发器,当R=0S=0时,QQ非都为1,这属于无效状态,引用[2]提到需要避免这种情况。 还需要注意不同实现方式(与非门或非门)的有效信号电平不同。例如,与非门构成的触发器,低电平有效,而或非门构成的则是高电平有效。这点需要明确区分,避免混淆。 可能用户会混淆RS触发器的不同类型,所以需要明确结构差异。同时,要提到触发器的应用场景,比如存储一位二进制信息,构成更复杂的触发器的基础,但也要指出基本RS触发器的局限性,如存在约束条件(RS不能同时有效),从而引出后续的改进型触发器,如钟控RS触发器或JK触发器。 在回答中需要引用提供的引用资料,特别是在提到结构不确定状态的时候,添加引用标识。例如,当描述基本结构时引用[^1],提到不确定状态时引用[^2]。 最后,生成的相关问题要围绕RS触发器的深入内容,比如不确定状态如何避免,结构差异,应用场景,以及与其他触发器的比较。确保问题能够引导用户进一步学习。 检查是否有遗漏点,比如时序图的分析,但用户没有提供具体图片,所以可能需要用文字描述。同时,确保使用正确的LaTeX格式,比如变量用$...$,独立公式用$$...$$,虽然这个回答可能不需要太多数学公式,但如果有方程或真值表,需要正确格式化。 总结回答的结构:先介绍定义结构,分与非门或非门两种实现;然后工作机制,包括各种输入情况;接着分析特性,如约束条件;最后应用场景。确保每个部分都清晰,并正确引用资料。</think>### RS触发器的原理及结构解析 #### 一、基本结构 RS触发器是最简单的时序逻辑电路之一,由两个逻辑门通过**交叉耦合**方式构成。根据逻辑门类型不同,分为以下两类: 1. **与非门构成**: - 输入为$\overline{R}$(复位端,低电平有效)$\overline{S}$(置位端,低电平有效) - 输出为$Q$$\overline{Q}$(互补输出) - 结构示意图: ```text ┌───────┐ ┌───────┐ │ ├─Q─────┤ │ │ 与非门│ │ 与非门│ └───┬───┘ └───┬───┘ │ │ ──┴── ──┴── R(复位) S(置位) ``` 2. **或非门构成**: - 输入为$R$(高电平有效)$S$(高电平有效) - 输出同样为$Q$$\overline{Q}$ - 电路结构类似,但逻辑电平有效性不同。 --- #### 二、工作机制 通过输入组合控制输出状态: 1. **置位(Set)**: - **与非门型**:$\overline{S}=0,\overline{R}=1$ → $Q=1$ - **或非门型**:$S=1,R=0$ → $Q=1$ - 功能:强制输出为逻辑1。 2. **复位(Reset)**: - **与非门型**:$\overline{S}=1,\overline{R}=0$ → $Q=0$ - **或非门型**:$S=0,R=1$ → $Q=0$ - 功能:强制输出为逻辑0。 3. **保持(Hold)**: - **与非门型**:$\overline{S}=\overline{R}=1$ → 保持原状态 - **或非门型**:$S=R=0$ → 保持原状态 - 功能:维持当前存储的值。 4. **禁用状态(Invalid)**: - **与非门型**:$\overline{S}=\overline{R}=0$ → $Q=\overline{Q}=1$(矛盾状态) - **或非门型**:$S=R=1$ → $Q=\overline{Q}=0$(矛盾状态) - **需避免此状态**,否则可能导致后续电路逻辑错误。 --- #### 三、核心特性 1. **记忆功能**:通过正反馈锁存数据。 2. **电平触发**:输入信号直接改变输出。 3. **约束条件**:禁止$R$$S$同时有效(如与非门型中$\overline{R}$$\overline{S}$不能同时为0)。 --- #### 四、应用场景 1. 按键消抖电路 2. 简单状态存储单元 3. 复杂触发器(如D触发器、JK触发器)的基础模块 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值