数字电路——触发器1(RS和钟控触发器)

触发器能够存储一位二进制信息的基本单元电路称触发器(Flip-Flop)

特点:

  1. 具有两个能自行保持的稳定状态,用来表示逻辑状态的01”。
  2. 具有一对互补输出。
  3. 有一组控制(激励、驱动)输入。
  4. 或许有定时(时钟)CP(Clock Pulse)。
  5. 在输入信号消失后,电路能将获得的新状态保存下来
  6. 触发器接收输入信号之前的状态叫做现态,用Qn表示。触发器接收输入信号之后的状态叫做次态,用Qn+1表示

空翻在一个时钟周期内触发器状态多次翻转的现象被称为空翻

一、RS触发器

1.1 与非门构成的触发器

1.电路结构

2.状态转化表

0与任何数相与都是0,即0&X=0,所以0与任何数经过与非门之后都得到1

\bar{S}\bar{R}同时为0时,{\bar{Q}}^{n+1}Q^{n+1}Q^{n}无关,输出恒为1,而一个数与它的非不会相等,所以此时被禁用

1与任何数经过与非门之后,得到的数是本身的相反数

\bar{S}\bar{R}同时为1时,Q^{n+1}{\bar{Q}}^{n}取反,所以Q^{n+1}=Q^{n},同理,{\bar{Q}}^{n+1}={\bar{Q}}^{n},表现在电路上就是保持电位。

\bar{S}=0,\bar{R}=1时,Q^{n+1}=1,表现为电路置位

\bar{S}=1,\bar{R}=0时,Q^{n+1}=0,表现为电路复位

3.特征方程

根据卡诺图写出化简后的公式

Q^{n+1}=S+\bar{R}Q^{n}\bar{S}+\bar{R}=1,即\bar{S}\bar{R}不能同时为0)

4.时序图

1.2 或非门构成的R-S触发器

1.电路结构

2.状态转化表

类比于与非门R-S可得状态转化表

3.特征方程

根据卡诺图写出化简后的公式

Q^{n+1}=S+\bar{R}Q^{n}(S*R=0,即S和R不能同时为1)

4.时序图

RS触发器总结

与非门或非门构成的RS触发器的特征方程:Q^{n+1}=S+\bar{R}Q^{n}

问题:(1)存在约束条件的限制;
⑵没有时钟信号,无法与其他部件同步工作。

所以引入时钟信号,这样就可以控制多长时间采集一次数据

二、钟控触发器

2.1 钟控RS触发器

加入时钟信号CP(Clock Pulse),当CP=0时,\bar{S}\bar{R}都为1,电路状态不变。

也就是说钟控RS触发器在CP为1时采集信号,CP=0时不采集

1.电路结构

2.状态转化表

CP=0时,此时的输出与或非门RS触发器的状态转化表一样。

3.特征方程

Q^{n+1}=S+\bar{R}Q^{n}(S*R=0,SR同时为1时,两端都输出1)

4.状态图

5.问题

(1)仍然存在约束条件。
(2)在CP=1期间,只要R、S稍有变化,那么Q端也随之变化,存在“空翻”问题。

2.2 钟控RS触发器

 CP=0时,G7和G8都为1,与R和S的输入无关,{Q}'电路状态不变

1.电路结构

2.状态转化表

3.特征方程

Q^{n+1}=S+\bar{R}Q^{n}(S*R=0,SR同时为1时,两端都输出1)

4.时序图

在CP从1变到0时,\bar{CP}=1,{Q}'才传送到了从触发器,也就是说,在一个CP周期内,RS不变,此时就解决了空翻问题

2.3 D触发器

1.电路结构

2.状态转化

CP=0时,G3和G4为1,Q^{n+1}=Q^{n}

CP=1时,
D=0时,G3=1,G4=0,Q^{n+1}=0
D=1时,G3=0,G4=1,Q^{n+1}=1

3.特征方程

Q^{n+1}={D}(这时就没有了约束条件)

4.存在的问题

(1)存在“空翻”问题;
(2)只有一个输入端,逻辑功能简单。

2.4 维持阻塞D触发器

1.电路结构

2.状态转化表

CP=0时,G3=G4=1:Q^{n+1}=Q^{n}
D=0时,G6=1,G5=0;
D=1时,G6=0,G5=1

CP=1时,
D=0时,G6=1,G4=0,G5=0,G3=1;Q^{n+1}=0
D=1时,G6=0,G4=1,G5=1,G3=0;Q^{n+1}=1

所以,只有在上升沿的时候才检测D信号,避免了空翻问题

3.特征方程

Q^{n+1}={D}

4.状态图

2.5 JK触发器

相较于之前的最大特点就是加入反馈,以此消除钟控RS的约束;
而且之前的禁用情况变为了翻转

1.电路结构

CP=0时,电路状态保持不变

2.状态转化表

3.特征方程

Q^{n+1}={J}\bar{Q}^{n}+{K}Q^{n}

4.存在的问题

还是会空翻,为了消除空翻,引出主从JK触发器

2.6 主从JK触发器

1.电路结构

2.状态转化表

3.特征方程

Q^{n+1}={J}\bar{Q}^{n}+{K}Q^{n}

4.状态图

Q^{n}=0时,只要J=1就可以使Q^{n+1}=1,其他情况状态不变

Q^{n}=1时,只要K=1就可以使Q^{n+1}=0

5.特点

(1)有时钟信号,可以同步工作;
(2)没有约束条件;
(3)有两个输入端;
(4)解决了“空翻”问题。


但存在的问题是一次性变化问题CP1期间,主触发器仅能翻转一次


原因:状态互补的QQ分别引回了门G7G8的输入,使门G7G8总有一个是被封锁的

当Q=1时,由于\bar{Q}=0,所以J端不起作用,
若K=1,则{\bar{Q}}'=1{Q}'=0;若K=0,则G7=G8=1,{\bar{Q}'}{Q}'状态保持不变

在CP从“1”变为“0”后,主触发器的状态传送到从触发器

由于一次性变化问题,倘若在CP=1期间,叠加在JK上面的干扰信号引起一次变化,那么将造成触发器的错误翻转。所以由 边沿型JK触发器代替主从JK触发器。

6.时序图

上升沿接收,每一次下降沿采集数据,00保持,01置0,10置1,11翻转

2.7 边沿型JK触发器

1.电路结构

CP=0时,G1,G1,G3,G6被封锁,\bar{S}=\bar{R}=1,所以Q^{n+1}=Q^{n}

CP=1时,

触发器处于自锁状态,所以Q^{n+1}=Q^{n}

CP从0变1,即CP上升沿时,触发器由保持状态不变进入自锁状态,所以Q^{n+1}=Q^{n}

CP从1变0,即CP下降沿时,G3、G6输出0,触发器解除自锁状态虽然G1、G2由于CP从1变0而被封锁,但其输出端S、R要经过一个与非门延迟才能变为1,所以在解除自锁的一刻,被基本RS触发器接收的R、S仍为CP下降沿到来之前的值,即:\bar{R}=\bar{K Q^{n}}\bar{S}=\bar{J \bar{Q}^{n}}

2.状态简化表

00保持,01置0,10置1,11翻转

3.特征方程

Q^{n+1}={J}\bar{Q}^{n}+{K}Q^{n}

4.状态图

同JK触发器相同,Q^{n}由0变1需要J=1,由1变0需要K=1

5.时序图

下降沿时采集JK信号,

边沿型JK触发器不仅囊括了主从JK触发器的优点,

可以看到CP=1期间的信号震荡不会影响结果,解决了主从JK触发器震荡导致一次性变化,造成触发器的错误翻转的问题。

三、总结

  1. 去除约束条件,有两种方案:D触发器和JK触发器
  2. 如果想要解决空翻问题,使触发器变为主从触发器(维持阻塞D触发器的结构也类似于主从触发器)
  3. 对于主从JK触发器的一次性变化问题,使用边沿JK触发器(利用或非门避免产生一次性变化问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值