数字电路——触发器2(集成触发器,相互转化)

集成触发器基于RS触发器和钟控触发器,想要了解可以参考文章RS和钟控触发器

一、集成触发器

这里介绍的集成触发器是将其他类型的触发器与RS触发器相结合

1.1 集成D触发器

1.逻辑符号

区分同步和异步工作:
当同步时,\bar{S}_{D}\bar{R}_{D}都为1,表现为D触发器的特征,CP上升沿接收D信号
异步时,表现为RS触发器的特征

2.特征方程

同步:
Q^{n+1}=D (\bar{S}_{D}\bar{R}_{D}=1)

异步:
Q^{n+1}=S_{D}+\bar{R}_{D}Q^{n} (\bar{S}_{D}+\bar{R}_{D}=1)

3.时序图

蓝色虚线之间的就是异步工作的情况,如果\bar{S}_{D}\bar{R}_{D}\neq 1,Q立即根据RS触发器的特性进行改变

同步时,CP每一次上升沿的时候采集D信号传送给Q

1.2 集成JK触发器

1.逻辑符号

区分同步和异步工作:
当同步时,\bar{S}_{D}\bar{R}_{D}都为1,表现为JK触发器的特征,CP下降沿接收JK信号
异步时,表现为RS触发器的特征

2.特征方程

同步:
Q^{n+1}=J \bar{Q}^{n}+\bar{K} Q^{n}(\bar{S}_{D}\bar{R}_{D}=1)

异步:
Q^{n+1}=S_{D}+\bar{R}_{D}Q^{n} (\bar{S}_{D}+\bar{R}_{D}=1)

3.时序图

蓝色虚线之间的就是异步工作的情况,\bar{S}_{D}\bar{R}_{D}只要有一个为0,表现为RS触发器,Q立即改变;

同步工作时,JK信号只有在下降沿才被传送到Q

1.3 其他功能触发器

(1)T触发器

1.逻辑符号

2.特征方程

Q^{n+1}=T\bigoplus Q^{n}

3.状态转化表

T=0时,Q^{n+1}=Q^{n}

T=1时,Q^{n+1}=\bar{Q}^{n}

实际上一般由JK触发器来实现其功能,T作为JK触发器的信号输入Q^{n+1}=T\bar{Q}^{n}+\bar{T}Q^n(与上面两等式一致),在下降沿时采集信息

(2){T}'触发器

实现的功能是逻辑取反

1.逻辑符号

{T}'触发器可以由JK触发器(T触发器的实现)D触发器构成

使用JK触发器时,令输入信号T为1时,Q^{n+1}=\bar{Q}^{n}

D触发器的特征方程为Q^{n+1}=D,因此将\bar{Q}_{}^{n}作为输入就可以得到相反的输出结果

2.特征方程

Q^{n+1}=\bar{Q}^{n}

3.时序图

(1)JK触发器构成的T`触发器(下降沿触发)

(2)D触发器构成的T`触发器(上升沿触发)

二、各类触发器的相互转化

最终变成谁,就以谁的特征方程为基准,化成被转化触发器的特征方程形式

2.1 JK触发器转换为D触发器

已知JK触发器的特征方程:Q^{n+1}=J\bar{Q}^{n}+\bar{K}Q^{n}

由于Q^{n}+\bar{Q}^{n}=1

触发器的特征方程Q^{n+1}=D=D(Q^{n}+\bar{Q}^{n})=D\bar{Q}^{n}+DQ^{n}

所以J=DK=\bar{D}

2.2 JK触发器转换为RS触发器

JK触发器的特征方程:Q^{n+1}=J\bar{Q}^{n}+\bar{K}Q^{n}

RS触发器的特征方程:Q^{n+1}=S+\bar{R}Q^{n}=S(Q^{n}+\bar{Q}^{n})+\bar{R}Q^{n} =(S+\bar{R})Q^{n}+S\bar{Q}^{n}

利用钟控RS触发器的约束条件:SR=0,可得\bar{S}R=\bar{S}R+SR=R,所以Q^{n+1}=S\bar{Q}^n+\bar{R}Q^n

因此J=S ,  K=R。

2.3 D触发器转换为JK触发器

D触发器方程:Q^{n+1}=D

JK触发器的特征方程:Q^{n+1}=J\bar{Q}^{n}+\bar{K}Q^{n}

2.4 D触发器转换为RS触发器

D触发器方程:Q^{n+1}=D

RS触发器:Q^{n+1}=S+\bar{R}Q^{n}

2.5 D触发器转换为T触发器

D触发器方程:Q^{n+1}=D
T触发器方程:Q^{n+1}=T\bigoplus \bar{Q}^n

于是D=T\bigoplus \bar{Q}^n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值