DeepSeek 助力教师打造个人知识库操作指南

以下是基于 DeepSeek + Cherry Studio 高效版的本地知识库搭建详细操作流程,结合硅基流动平台实现高效部署:

 

一、安装 Cherry Studio 和配置 DeepSeek 模型

1.下载并安装 Cherry Studio

访问 Cherry Studio 官网,根据操作系统选择对应版本:

Windows:.exe 安装包(支持安装版或便携版)

这里给出了安装包:

我用夸克网盘分享了「Cherry-Studio-0.9.19-setup.exe」,点击链接即可保存。打开「夸克APP」,无需下载在线播放视频,畅享原画5倍速,支持电视投屏。
链接:https://pan.quark.cn/s/d42f2203ac47

macOS:.dmg 文件(适配 Intel/Apple Silicon 芯片)

Linux:AppImage 文件(x86_64 架构)

双击安装包,按提示完成安装(默认路径或自定义路径均可)

图片

 

2.获取硅基流动 API 密钥

注册硅基流动账号:访问硅基流动官网并注册

创建 API 密钥:登录后进入 用户中心 → API 密钥 → 新建密钥,复制生成的密钥并保存

图片

 

3.配置 DeepSeek 模型服务

打开 Cherry Studio,进入左下角设置 → 模型服务 → 选择“硅基流动”,粘贴 API 密钥并点击检查验证连通性

图片

添加模型:点击管理 → + 添加模型,输入模型 ID deepseek-ai/deepseek-r1(推理模型)

图片

配置嵌入模型:选择 嵌入 → 添加 BAAI/bge-m3(免费多语言向量模型),用于知识库核心功能

图片

 

二、创建本地知识库并导入文件

1.新建知识库

点击 Cherry Studio 左侧工具栏的 知识库 → 添加,输入名称(如“工作资料库”),选择嵌入模型 BAAI/bge-m3 

 

2.导入文件

支持格式:PDF、DOCX、PPTX、XLSX、TXT、MD 等

操作方式:

直接拖拽文件/文件夹到知识库界面,或点击 添加文件 手动上传。

支持批量导入网页链接(需注意部分网站需登录权限)

自动向量化:文件上传后,系统自动进行向量化处理,出现 绿色√ 表示成功

 

3.多人协作设置(可选)

在知识库权限管理中,可设置 共享链接 或分配团队成员访问权限,支持多人协同编辑和检索

 

三、使用知识库进行智能问答

1.启动对话

返回 Cherry Studio 聊天界面,选择 DeepSeek R1 模型,点击 知识库图标 并勾选已创建的知识库

 

2.提问与检索

输入问题(如“根据知识库内容,总结我们班学生的学习情况”),模型将结合本地文档生成回答,并标注引用来源

支持调整参数:在知识库设置中修改 请求文档数量 或 分段大小,优化检索精度

 

3.维护与更新

定期删除过期文件,新增文档后重新向量化,保持知识库时效性

若需处理多语言/长文本,可升级至付费嵌入模型(如 BAAI/bge-m3 Pro)

 

注意事项

1.文件格式限制:PDF 中的图片需手动 OCR 转文字后才能向量化

2.API 密钥管理:密钥仅显示一次,需妥善保存

3.算力要求:完全离线部署需较高本地算力(推荐 16GB 以上内存)

### Deepseek 的核心功能与应用场景 Deepseek是一款集成了智能搜索、多模态交互以及个性化定制能力的强大工具[^1]。此款软件不仅能够帮助用户更精准地获取所需信息,还支持多种类型的交流方式,从而适应不同用户的偏好。 #### 多样化的接入途径 为了方便各类设备上的使用者,Deepseek提供了网页端和移动端两种主要的访问形式: - **网页端**: 用户可以直接前往官方网站 https://chat.deepseek.com/ 或者其他指定链接来启动应用程序并立即开始使用其服务[^2]。 - **移动端**: 对于移动设备用户来说,在官方应用商店内搜索带有标志性蓝色鲸鱼标志的应用程序进行下载安装是最安全可靠的方法。 #### 应用领域广泛覆盖 得益于先进的技术架构和支持多样化的工作流程设计,Deepseek特别适合以下几个方面的需求: - 学术研究:无论是查找最新的科研成果还是整理文献资料,都可以借助该平台实现高效的资源整合; - 数据分析:内置强大的数据处理引擎使得复杂的数据查询变得简单易行; - 内容创作:提供丰富的素材库加上灵活的任务管理机制,有助于激发创意灵感的同时提高工作效率; ```python # 示例代码展示如何调用API接口执行一次简单的文本检索请求 import requests url = "https://api.deepseek.com/v1/search" params = { 'query': '人工智能发展趋势', } response = requests.get(url, params=params) if response.status_code == 200: results = response.json() print(results['data']) else: print('Error:', response.status_code) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东锋17

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值