多束测线问题

问题一

符号说明

符号说明单位
W W W多波束测量覆盖宽度m
θ \theta θ多波束换能器开角°
α \alpha α海底坡度°
D D D海水深度m
η \eta η相邻条带之间重叠率%
β \beta β测线方向与海底坡面的法向在水平面上投影的夹角
A i A_i Ai i i i条测线在中心点处多波束换能器的位置
B i B_i Bi i i i条测线距中心点最远的波束与海底的交点
C i C_i Ci i i i条测线距中心点最远的波束与海底的交点
D i D_i Di i i i条测线中心点与海底坡面的垂直距离m
e ⃗ s \vec{e}_s e s海底坡面法向量
e ⃗ m \vec{e}_m e m测线平面法向量

模型建立

在问题一中,需要建立在海底坡度为 α \alpha α的情况下多波束测深的覆盖宽度和相邻条带之间重叠率关系的数学模型,并且计算题目给出参数值下的具体海水深度,覆盖宽度和重叠率。通过几何分析可知本问为一个二维平面问题,首先建立二维平面直角坐标系,在坐标系下依据平面几何知识进行推导,得出对应测深模型下的各参数表达式,然后使用正弦定理构建等式,求解出海水深度,覆盖宽度和重叠率的计算公式,最后带入具体参数值得到最终求解结果,其流程图如下图所示:具体过程如下:

平面直角坐标系的建立与几何分析准备

以选定的测线 A i A_i Ai作为坐标原点 O O O,以海水深度方向为 Y Y Y轴,测线间距方向为 X X X轴,建立二维平面直角坐标系,并定义 B i B_i Bi C i C_i Ci为第 i i i条测线最远波束与海底坡面的交点, D i D_i Di为测线中心点距离海底坡面的垂直距离, O i O_i Oi为测线在海底坡面上的投影,选取三条相邻测线测线 A i − 1 A_{i-1} Ai1, A i A_i Ai, A i + 1 A_{i+1} Ai+1作为示意制作几何分析图如下:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

绘制一个这个图,在横纵加上对应的XY,注意使用数学公式XY

几何分析与参数表达式建立

由题目介绍可知,多波束测深条带的覆盖率 η \eta η计算需要求解覆盖宽度 W W W,而覆盖宽度由换能器开角 θ \theta θ与海水深度 D D D决定,故下面需要首先求解出海水深度 D D D的表达式,再推导得到覆盖深度 W W W的表达式,最后计算得到覆盖率 η \eta η

海水深度表达式推导

根据下图所示,已知测量船在坐标原点 O O O处的深度为 D 0 D_0 D0 O i O_i Oi的坐标为 ( x i , y i ) (x_i,y_i) (xi,yi) O i − 1 O_{i-1} Oi1的坐标为 ( x i − 1 , y i − 1 ) (x_{i-1},y_{i-1}) (xi1,yi1),设两点间距的垂直距离为 l l l,在已知海底坡度 α \alpha α的条件下,则其表达式为:
l = ∣ y i − y i − 1 ∣ = ∣ x i − x i − 1 ∣ ⋅ tan ⁡ α l=|y_i-y_{i-1}|=|x_i-x_{i-1}|\cdot\tan\alpha l=yiyi1=xixi1tanα

由于选取的 A i A_i Ai对应的 O i O_i Oi不为坡面上的最高点,故在计算其他对应深度 D j D_j Dj的情况下,应考虑垂直距离 l l l的方向性,故给出对任意测线到坡面的垂直距离 D i D_i Di的定义为:
D i = { D 0 + l ,   y i > y i − 1 D 0 − l ,   y i ≤ y i − 1 D_i=\begin{cases}D_0+l,&\text{ }y_i>y_{i-1}\\D_0-l,&\text{ }y_i\leq y_{i-1}\end{cases} Di={D0+l,D0l, yi>yi1 yiyi1

覆盖宽度表达式推导

由式 ( 2 ) (2) (2)已经得到了 D i D_i Di的表达式,在图xx的基础上增添辅助线如下图所示:

由两线平行可推导得 ∠ C i B i E i = α \angle C_iB_iE_i=\alpha CiBiEi=α,根据三角形内角和为 180 ° 180° 180°可计算得到
∠ O B i C i = π 2 − α − θ 2 \angle OB_iC_i = \frac{\pi}{2} - \alpha - \frac{\theta}{2} OBiCi=2πα2θ
∠ O B i C i + θ + ∠ O C i B i = 180 ° \angle OB_iC_i+\theta+\angle OC_iB_i=180° OBiCi+θ+OCiBi=180°可计算得到:
∠ O C i B i = π 2 + α − θ 2 \angle OC_iB_i = \frac{\pi}{2} + \alpha - \frac{\theta}{2} OCiBi=2π+α2θ
正弦定理是三角学中的一个基本定理,指的是在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。在三角形 O B i E i OB_iE_i OBiEi与三角形 O C i E i OC_iE_i OCiEi中使用正弦定理可推导得:
B i O i sin ⁡ θ 2 = D i sin ⁡ ∠ O B i C i      \frac{B_iO_i}{\sin\frac{\theta}{2}}=\frac{D_i}{\sin\angle OB_iC_i} \space\space\space\space sin2θBiOi=sinOBiCiDi    

C i O i sin ⁡ θ 2 = D i sin ⁡ ∠ O C i B i \frac{C_iO_i}{\sin\frac{\theta}{2}}=\frac{D_i}{\sin\angle OC_iB_i} sin2θCiOi=sinOCiBiDi

由上述公式即可导出 B i O i B_iO_i BiOi C i O i C_iO_i CiOi的表达式,再根据覆盖宽度 W W W的定义,可写出其表达式为:
W i = B i O i + C i O i = D i ⋅ sin ⁡ θ 2 ⋅ ( 1 π 2 − α − θ 2 + 1 π 2 + α − θ 2 ) W_i=B_iO_i+C_iO_i=D_i\cdot\sin\frac{\theta}{2}\cdot(\frac{1}{\frac{\pi}{2} - \alpha - \frac{\theta}{2}}+\frac{1}{\frac{\pi}{2} + \alpha - \frac{\theta}{2}}) Wi=BiOi+CiOi=Disin2θ(2πα2θ1+2π+α2θ1)

其中 W i W_i Wi代表的是第 i i i条测线的覆盖宽度

相邻条带重叠率表达式推导

由题可知重叠率的计算公式为:
η = ∣ B i C i − 1 ∣ W i − 1 \eta=\frac{|B_iC_{i-1}|}{W_{i-1}} η=Wi1BiCi1
虽然 B i C i − 1 B_iC_{i-1} BiCi1未直接求出,但是根据几何关系,可用已知量表达为:
∣ B i C i − 1 ∣ = ∣ B i O i ∣ + ∣ C i − 1 O i − 1 ∣ − ∣ O i O i − 1 ∣ |B_iC_{i-1}|=|B_iO_{i}|+|C_{i-1}O_{i-1}|-|O_{i}O_{i-1}| BiCi1=BiOi+Ci1Oi1OiOi1
带入可得其表达式为:
∣ B i C i − 1 ∣ = D i sin ⁡ ( π 2 − θ 2 − α ) ⋅ sin ⁡ θ 2 + D i − 1 sin ⁡ ( π 2 − θ 2 + α ) ⋅ sin ⁡ θ 2 − d cos ⁡ α |B_iC_{i-1}|=\frac{D_i}{\sin\left(\frac{\pi}{2} - \frac{\theta}{2} - \alpha\right)} \cdot \sin\frac{\theta}{2} + \frac{D_{i-1}}{\sin\left(\frac{\pi}{2} - \frac{\theta}{2} + \alpha\right)} \cdot \sin\frac{\theta}{2} - \frac{d}{\cos\alpha} BiCi1=sin(2π2θα)Disin2θ+sin(2π2θ+α)Di1sin2θcosαd
进而对计算过程进行简化,最终得到重叠率的最终表达式为:
η = D i sin ⁡ ( π 2 − θ 2 − α ) ⋅ sin ⁡ θ 2 + D i − 1 sin ⁡ ( π 2 − θ 2 + α ) ⋅ sin ⁡ θ 2 − d cos ⁡ α W i \eta = \frac{ \frac{D_i}{\sin\left(\frac{\pi}{2} - \frac{\theta}{2} - \alpha\right)} \cdot \sin\frac{\theta}{2} + \frac{D_{i-1}}{\sin\left(\frac{\pi}{2} - \frac{\theta}{2} + \alpha\right)} \cdot \sin\frac{\theta}{2} - \frac{d}{\cos\alpha} }{ W_i } η=Wisin(2π2θα)Disin2θ+sin(2π2θ+α)Di1sin2θcosαd

其中 i = 1 , 2 , … 9 i=1,2,\dots9 i=1,29 d d d为相邻测线之间的间距。

综上所述,建立起多波束测深的覆盖宽度及重叠率的数学模型为:
{ η = D i sin ⁡ ( π 2 − θ 2 − α ) ⋅ sin ⁡ θ 2 + D i − 1 sin ⁡ ( π 2 − θ 2 + α ) ⋅ sin ⁡ θ 2 − d cos ⁡ α W i W i = D i ⋅ sin ⁡ θ 2 ⋅ ( 1 π 2 − α − θ 2 + 1 π 2 + α − θ 2 ) D i = { D 0 + l , if  y i > y i − 1 D 0 − l , if  y i ≤ y i − 1 l = ∣ x i − x i − 1 ∣ ⋅ tan ⁡ α \left\{ \begin{aligned} \eta &= \frac{ \frac{D_i}{\sin\left(\frac{\pi}{2} - \frac{\theta}{2} - \alpha\right)} \cdot \sin\frac{\theta}{2} + \frac{D_{i-1}}{\sin\left(\frac{\pi}{2} - \frac{\theta}{2} + \alpha\right)} \cdot \sin\frac{\theta}{2} - \frac{d}{\cos\alpha} }{ W_i } \\ W_i &= D_i \cdot \sin\frac{\theta}{2} \cdot \left( \frac{1}{\frac{\pi}{2} - \alpha - \frac{\theta}{2}} + \frac{1}{\frac{\pi}{2} + \alpha - \frac{\theta}{2}} \right) \\ D_i &= \begin{cases} D_0 + l, & \text{if } y_i > y_{i-1} \\ D_0 - l, & \text{if } y_i \leq y_{i-1} \end{cases} \\ l & = |x_i - x_{i-1}| \cdot \tan\alpha \end{aligned} \right. ηWiDil=Wisin(2π2θα)Disin2θ+sin(2π2θ+α)Di1sin2θcosαd=Disin2θ(2πα2θ1+2π+α2θ1)={D0+l,D0l,if yi>yi1if yiyi1=xixi1tanα

模型求解

结果

根据上述模型 ( 12 ) (12) (12),将多波束换能器的开角 θ = 120 ° \theta=120° θ=120°,坡度角 α = 1.5 ° \alpha=1.5° α=1.5°,海域中心处的海水深度 D 0 = 70 m D_0=70m D0=70m,测线间距 d = 200 m d=200m d=200m等参数值代入模型,利用Python编写程序进行求解,即可得到特定位置处的海水深度,覆盖宽度以及一条测线的重叠率,具体结果如下表所示:

结果分析
  1. 海水深度计算结果:不同位置的海水深度随着测线距中心点处的距离增大而减小,其斜率为 tan ⁡ α \tan\alpha tanα,与实际情况中坡高沿 X X X轴方向增大相符合。
  2. 覆盖宽度计算结果:在测线间距,换能器开角一定时,多波束测量仪在浅水区的覆盖宽度更小,深水区更大。
  3. 重叠率:在海水深度较大处相邻条带之间的重叠率较大,在海水深度较小处重叠率较小甚至小于0出现漏测线性。故可以在深水区增大测线间距,提高测量效率,在浅水区增加测线数量,实现全覆盖而不出现漏测。

问题二

模型建立

在问题二中,已知一个矩形海域其坡度为 α \alpha α且测线方向与海底坡面的法向在水平面投影的夹角为 β \beta β,在此前提下建立覆盖宽度的数学模型。由题可知本问在第一问的基础上修改为了一个三维立体问题,将原本的斜线模型转化到一个斜面上进行覆盖宽度的计算。故需要将原本的模型进行优化和利用,首先需要将坐标系从二维直角坐标系转化为三维直角坐标系以适用于三维问题,然后需要求解出海底坡面的法向量 e ⃗ s \vec{e}_s e s与测线平面法向量 e ⃗ m \vec{e}_m e m,从而求解出两平面的交线方程,并且求解出其与水平面的夹角 γ \gamma γ,进而求解出海水深度 D D D与覆盖宽度 W W W,将其带入问题一的模型中,即可实现问题二的求解。

三维直角坐标系的建立

以海底坡面的中心作为坐标原点 O O O,垂直于 α \alpha α所在平面的正方向为 X X X轴,平行于 α \alpha α且垂直于海水深度方向为 Y Y Y轴,海水深度方向为 Z Z Z轴。如下图所示:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

交线方程求解

为了能够将第二问的三维问题转化为第一问中已经可求解的数学模型,首先需要求解出此时斜面上测线的投影方程,即测线平面与矩形平面的交线方程。此时的三维立体问题示意图如下:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

海底坡面法向量 e ⃗ s \vec{e}_s e s

根据几何关系,坡面法向量 e ⃗ s \vec{e}_s e s垂直于直线 O A OA OA且垂直于 Y Y Y轴,其中 O A OA OA与X轴的夹角为 α \alpha α,故其表达式为 ( − cos ⁡ α , 0 , sin ⁡ α ) (-\cos\alpha,0,\sin\alpha) (cosα,0,sinα),而 Y Y Y轴的方向向量为 ( 0 , 1 , 0 ) (0,1,0) (0,1,0),故可得到 e ⃗ s \vec{e}_s e s的表达式为:
e ⃗ s = ∣ i j k − cos ⁡ α 0 sin ⁡ α 0 1 0 ∣ = ( − sin ⁡ α , 0 , − cos ⁡ α ) \vec{e}_s=\begin{vmatrix}\mathbf{i}&\mathbf{j}&\mathbf{k}\\-\cos\alpha&0&\sin\alpha\\0&1&0\end{vmatrix}=(-\sin\alpha,0,-\cos\alpha) e s= icosα0j01ksinα0 =(sinα,0,cosα)

测线平面法向量 e ⃗ m \vec{e}_m e m

根据几何关系,测线平面法向量 e ⃗ m \vec{e}_m e m垂直于测线方向同时又垂直于 Z Z Z轴,测线方向的单位向量 e ⃗ l \vec{e}_l e l可用 β \beta β角表示为:
e ⃗ l = ( cos ⁡ β , sin ⁡ β , 0 ) \vec{e}_l=(\cos\beta,\sin\beta,0) e l=(cosβ,sinβ,0)
Z Z Z轴单位向量为 ( 0 , 0 , 1 ) (0,0,1) (0,0,1),故可求得测线平面法向量 e ⃗ m \vec{e}_m e m的表达式为:
e ⃗ m = ∣ i j k cos ⁡ β sin ⁡ β 0 0 0 1 ∣ = e ⃗ m = ( sin ⁡ β , − cos ⁡ β , 0 ) \vec{e}_m=\begin{vmatrix}\mathbf{i}&\mathbf{j}&\mathbf{k}\\\cos\beta&\sin\beta&0\\0&0&1\end{vmatrix}=\vec{e}_m=(\sin\beta,-\cos\beta,0) e m= icosβ0jsinβ0k01 =e m=(sinβ,cosβ,0)

交线方程 l l l确定

根据已经求出的海底坡面法向量 e ⃗ s \vec{e}_s e s与海底坡面法向量 e ⃗ m \vec {e}_m e m,交线向量 l ⃗ \vec l l 可由两向量叉乘确定,根据 e ⃗ s ⊥ l ⃗ \vec e_s\perp \vec l e sl e ⃗ m ⊥ l ⃗ \vec e_m\perp \vec l e ml 得到其表达式为:
l ⃗ = e ⃗ s × e ⃗ m = l ⃗ = ∣ i j k − sin ⁡ α 0 − cos ⁡ α sin ⁡ β − cos ⁡ β 0 ∣ \vec l=\vec e_s \times \vec e_m =\vec{l}=\begin{vmatrix}\mathbf{i}&\mathbf{j}&\mathbf{k}\\-\sin\alpha&0&-\cos\alpha\\\sin\beta&-\cos\beta&0\end{vmatrix} l =e s×e m=l = isinαsinβj0cosβkcosα0
最终确定交线方向 l ⃗ \vec l l 的解为: l ⃗ = ( − cos ⁡ α ⋅ cos ⁡ β , − cos ⁡ α ⋅ sin ⁡ β , sin ⁡ α ⋅ cos ⁡ β ) \vec{l}=(-\cos\alpha\cdot\cos\beta,-\cos\alpha\cdot\sin\beta,\sin\alpha\cdot\cos\beta) l =(cosαcosβ,cosαsinβ,sinαcosβ)

又由于交线经过原点 O ( 0 , 0 , 0 ) O(0,0,0) O(0,0,0),故可以确定交线的方程为:
l ⃗ = ( − cos ⁡ α ⋅ cos ⁡ β , − cos ⁡ α ⋅ sin ⁡ β , sin ⁡ α ⋅ cos ⁡ β ) \vec{l}=(-\cos\alpha\cdot\cos\beta,-\cos\alpha\cdot\sin\beta,\sin\alpha\cdot\cos\beta) l =(cosαcosβ,cosαsinβ,sinαcosβ)

交线与水平面夹角 γ \gamma γ求解

在已知交线方程的条件下,只要能求出其与水平面的夹角 γ \gamma γ,便可求解出第一问中的海水深度这一条件,于是根据几何关系,交线截面示意图如下:

水平面的法向量 n ⃗ = ( 0 , 0 , 1 ) \vec n=(0,0,1) n =(0,0,1),可根据线面角的计算公式确定夹角 γ \gamma γ的表达式如下:
sin ⁡ γ = cos ⁡ < l ⃗ , n ⃗ > ∣ l ⃗ ⋅ n ⃗ ∣ ∣ l ⃗ ∣ ⋅ ∣ n ⃗ ∣ = ∣ sin ⁡ α ⋅ cos ⁡ β ∣ cos ⁡ 2 α + sin ⁡ 2 α ⋅ cos ⁡ 2 β \sin\gamma=\cos<\vec l,\vec n>\frac{|\vec{l}\cdot\vec{n}|}{|\vec{l}|\cdot|\vec{n}|}=\frac{|\sin\alpha\cdot\cos\beta|}{\sqrt{\cos^2\alpha+\sin^2\alpha\cdot\cos^2\beta}} sinγ=cos<l ,n >l n l n =cos2α+sin2αcos2β sinαcosβ
化简后结果为:
γ = arcsin ⁡ ∣ sin ⁡ α ⋅ cos ⁡ β ∣ cos ⁡ 2 α + sin ⁡ 2 α ⋅ cos ⁡ 2 β \gamma=\arcsin\frac{|\sin\alpha\cdot\cos\beta|}{\sqrt{\cos^2\alpha+\sin^2\alpha\cdot\cos^2\beta}} γ=arcsincos2α+sin2αcos2β sinαcosβ

海水深度求解

根据几何关系,不妨设测量船距坐标原点处的距离为 L L L,则通过 γ \gamma γ容易建立起 L L L D D D的关系为:
D = L ⋅ tan ⁡ γ D=L \cdot \tan\gamma D=Ltanγ

覆盖宽度W求解

由几何关系可知,覆盖宽度 W W W对应存在的斜线 l 1 l_1 l1垂直于测线方向向量 e l e_l el,且垂直于海底坡面法向量 e ⃗ s \vec{e}_s e s,如示意图所示:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

故可确定 l 1 l_1 l1与水平面的夹角 δ \delta δ为:
l ⃗ 1 = e ⃗ l × e ⃗ s = ∣ i j k cos ⁡ β sin ⁡ β 0 − sin ⁡ α 0 − cos ⁡ α ∣ \vec l_1=\vec e_l \times \vec e_s=\begin{vmatrix}\mathbf{i}&\mathbf{j}&\mathbf{k}\\\cos\beta&\sin\beta&\mathbf{0}\\-\sin\alpha&0&-\cos\alpha\end{vmatrix} l 1=e l×e s= icosβsinαjsinβ0k0cosα
又因为水平面法向量 n ⃗ = ( 0 , 0 , 1 ) \vec n=(0,0,1) n =(0,0,1),根据线面角计算公式:
sin ⁡ δ = cos ⁡ < l ⃗ 1 , n ⃗ > = ∣ l ⃗ 1 ⋅ n ⃗ ∣ ∣ l ⃗ 1 ∥ n ⃗ ∣ = ∣ sin ⁡ β sin ⁡ α ∣ cos ⁡ 2 β cos ⁡ 2 α + sin ⁡ 2 β \sin\delta=\cos<\vec{l}_1,\vec{n}>=\frac{\mid\vec{l}_1\cdot\vec{n}\mid}{\mid\vec{l}_1\|\vec{n}\mid}=\frac{\mid\sin\beta\sin\alpha\mid}{\sqrt{\cos^2\beta\cos^2\alpha+\sin^2\beta}} sinδ=cos<l 1,n >=l 1n l 1n =cos2βcos2α+sin2β sinβsinα
化简后结果为:
arcsin ⁡ δ = ∣ sin ⁡ β sin ⁡ α ∣ cos ⁡ 2 β cos ⁡ 2 α + sin ⁡ 2 β \arcsin\delta=\frac{\mid\sin\beta\sin\alpha\mid}{\sqrt{\cos^2\beta\cos^2\alpha+\sin^2\beta}} arcsinδ=cos2βcos2α+sin2β sinβsinα
综上所述,将求得的结果带入第一问模型,可构建对于矩形海域多波束测深的覆盖宽度及重叠率的数学模型为:
{ W = D sin ⁡ ( π 2 − θ 2 − δ ) ⋅ sin ⁡ θ 2 + D sin ⁡ ( π 2 − θ 2 + δ ) ⋅ sin ⁡ θ 2 D = L ⋅ tan ⁡ γ δ = arcsin ⁡ ∣ sin ⁡ β ⋅ sin ⁡ α ∣ cos ⁡ 2 β ⋅ cos ⁡ 2 α + sin ⁡ 2 β γ = arcsin ⁡ ∣ sin ⁡ α ⋅ cos ⁡ β ∣ cos ⁡ 2 α + sin ⁡ 2 α ⋅ cos ⁡ 2 β \left\{ \begin{aligned} W &= \frac{D}{\sin\left(\frac{\pi}{2} - \frac{\theta}{2} - \delta\right)} \cdot \sin\frac{\theta}{2} + \frac{D}{\sin\left(\frac{\pi}{2} - \frac{\theta}{2} + \delta\right)} \cdot \sin\frac{\theta}{2} \\ D &= L\cdot \tan\gamma\\ \delta &= \arcsin\frac{|\sin\beta \cdot \sin\alpha|}{\sqrt{\cos^2\beta \cdot \cos^2\alpha + \sin^2\beta}}\\ \gamma&=\arcsin\frac{|\sin\alpha\cdot\cos\beta|}{\sqrt{\cos^2\alpha+\sin^2\alpha\cdot\cos^2\beta}}\\ \end{aligned} \right. WDδγ=sin(2π2θδ)Dsin2θ+sin(2π2θ+δ)Dsin2θ=Ltanγ=arcsincos2βcos2α+sin2β sinβsinα=arcsincos2α+sin2αcos2β sinαcosβ

模型求解

根据上述模型(23),将题目给出的参数值带入我们的模型中,利用Python进行求解,即可求得特定位置的覆盖宽度,其结果如下表所示:

结果分析

分析上表结果,得到了如下的结论:

  1. 关于海水深度和覆盖宽度的规律几乎和第一问完全一致,说明结果具有一致性。
  2. 通过给入与第一问相同的题设条件,得到与第一问完全相同的结果,验证了模型的正确性
  3. 在不同深浅的水域中覆盖宽度变化较大,直线行驶时产生的轨迹为类三角(锥)形,并不均匀。
  4. 覆盖深度几乎不随测线方向夹角变化。

问题三

在问题三中,需要考虑一个具体的矩形海域内的海水深度测量,设计一组测量长度最短且可覆盖整个待测海域的测线,且重叠率满足 10 % − 20 % 10\%-20\% 10%20%的要求,依据题意,要完成这样的测线布设,需要确定测线的布置方向和布置间隔,首先通过数学公式推导与蒙特卡洛算法随机比较,确定了最短测线布置方向方案是主测线走平行于等高线进行测量,然后基于贪心算法确定各测线之间的最优布置位置,最后将海域的具体参数带入上述模型中实现测线分布的求解。

最短测线布置方向推导

通过查阅资料,目前使用的对于简单地貌的多波束测量方案中最优测线布设均采取沿等高线方向分布进行测量,为验证这一方案的可靠性和高效性,本文从数学推导和蒙特卡洛方法两个层面进行了验证,集体过程如下:

数学证明

为了证明测线沿着海水等深线方向是最佳方向,只需要证明该测线所对应的覆盖面积不小于其他方向测线对应的覆盖面积,故在海底坡面上选取任意一段长度为 l l l的测线为 A B AB AB,其中 A A A在坡面上部, B B B在坡面下部,点 O O O A B AB AB的中点,同时过点 O O O作一条与AB等长的测线 C D CD CD,其方向固定为平行于海底等高线,如下图所示:

不难发现, A B AB AB在矩形海域上形成的扫测面为一个等腰梯形,而 C D CD CD形成的扫测面则是一个矩形,再设 A A A点的海底深度为 H 1 H_1 H1 B B B点的海底深度则是 H 2 H_2 H2,而 O O O点的海底深度则可表示为 H 1 + H 2 2 \frac{H_1+H_2}{2} 2H1+H2,将其带入第一问的模型中,则可确定 A , B , O A,B,O A,B,O三点的所在截面的覆盖宽度,分别设为 W 1 , W 2 , W 3 W_1,W_2,W_3 W1,W2,W3,故可计算出 A B AB AB扫测面的面积为: S A B = W 1 + W 2 2 ⋅ l S_{AB}=\frac{W_1+W_2}{2}\cdot l SAB=2W1+W2l C D CD CD扫测面的面积为: S C D = W 3 ⋅ l S_{CD}=W_3 \cdot l SCD=W3l,故最终只需要论证 W 3 > W 1 + W 2 2 W_3>\frac{W_1+W_2}{2} W3>2W1+W2即可。将第一问中 W W W的计算式带入可得:
W 1 + W 2 2 = 1 2 ( H 1 + H 2 sin ⁡ ( π / 2 − θ / 2 − α ) + H 1 + H 2 sin ⁡ ( π / 2 − θ / 2 + α ) ) sin ⁡ ( θ / 2 ) , W 3 = 1 2 ( H 1 + H 2 sin ⁡ ( π / 2 − θ / 2 − α ) + H 1 + H 2 sin ⁡ ( π / 2 − θ / 2 + α ) ) sin ⁡ ( θ / 2 ) . \frac{W_{1}+W_{2}}{2}=\frac{1}{2}\Big(\frac{H_{1}+H_{2}}{\sin(\pi/2-\theta/2-\alpha)}+\frac{H_{1}+H_{2}}{\sin(\pi/2-\theta/2+\alpha)}\Big)\sin(\theta/2) ,\\W_{3}=\frac{1}{2}\Big(\frac{H_{1}+H_{2}}{\sin(\pi/2-\theta/2-\alpha)}+\frac{H_{1}+H_{2}}{\sin(\pi/2-\theta/2+\alpha)}\Big)\sin(\theta/2). 2W1+W2=21(sin(π/2θ/2α)H1+H2+sin(π/2θ/2+α)H1+H2)sin(θ/2),W3=21(sin(π/2θ/2α)H1+H2+sin(π/2θ/2+α)H1+H2)sin(θ/2).
显然两者之间的关系只取决于 α \alpha α的大小,故不妨将其化简为关于 α \alpha α的函数如下:
f ( α ) = 1 sin ⁡ ( π / 2 − θ / 2 − α ) + 1 sin ⁡ ( π / 2 − θ / 2 + α ) , f(\alpha)=\frac1{\sin(\pi/2-\theta/2-\alpha)}+\frac1{\sin(\pi/2-\theta/2+\alpha)}, f(α)=sin(π/2θ/2α)1+sin(π/2θ/2+α)1,
进一步化简得到:
f ( α ) = 4 cos ⁡ ( θ / 2 ) ∙ cos ⁡ α cos ⁡ ( 2 α ) + cos ⁡ θ . f(\alpha)=4\cos(\theta/2)\bullet\frac{\cos\alpha}{\cos(2\alpha)+\cos\theta}. f(α)=4cos(θ/2)cos(2α)+cosθcosα.
θ \theta θ视为常数,故其增减性只与后面一项有关,将后面一项提出,对 α \alpha α求导得:
g ( α ) = cos ⁡ α cos ⁡ ( 2 α ) + cos ⁡ θ = cos ⁡ α 2 cos ⁡ 2 α − 1 + cos ⁡ θ , g\left(\alpha\right)=\frac{\cos\alpha}{\cos\left(2\alpha\right)+\cos\theta}=\frac{\cos\alpha}{2\cos^2\alpha-1+\cos\theta}, g(α)=cos(2α)+cosθcosα=2cos2α1+cosθcosα,
将常数部分 1 − cos ⁡ θ 1-\cos\theta 1cosθ设为 k k k,然后将 cos ⁡ α \cos \alpha cosα设为 x x x,即可化简为:
h ( x ) = x 2 x 2 − k = 1 2 x − k / x h\left(x\right)=\frac{x}{2x^{2}-k}=\frac{1}{2x-k/x} h(x)=2x2kx=2xk/x1
显然为一单调递减的函数,又因为 cos ⁡ α \cos \alpha cosα [ 0 , π ] [0,\pi] [0,π]上单调递减,故 f ( α ) f(\alpha) f(α)为一个单调递增的函数。

对于测线 C D CD CD,因为其平行于等深线,即 α 为   海   底   坡   度   ,   α = 1. 5 ∘ \alpha \textbf{为 海 底 坡 度 , }\alpha = 1. 5^{\circ } α     , α=1.5,而对于任意测线 C D CD CD,由几何关
系可得 α ′ ⩽ 1. 5 ∘ . \alpha^\prime\leqslant1.5^\circ. α1.5.由$f( \alpha ) $的 单 调 性 可 得 f ( α ′ ) < f ( α ) f( \alpha ^{\prime }) < f( \alpha ) f(α)<f(α), 因 此 ( W 1 + W 2 ) / 2 ⩽ W 3 ( W_1+ W_2) / 2\leqslant W_3 (W1+W2)/2W3 S 1 ⩽ S 2 . S_1\leqslant S_2. S1S2.

由此证得平行于等深线的测线所对应的覆盖面积最大,即测线平行等深线方向时为最佳布设方向。

蒙特卡洛算法证明

为了证明平行于等高线的测线所对应的覆盖面积最大,根据蒙特卡罗算法,随机生成100种不同方向的测线,计算该测线上的总扫测面面积,与平行于等高线的测线的扫测面面积进行比较,并以矩形海域中心点出发,缓慢增大与等高线方向的夹角,计算不同夹角下的扫测面面积,可视化图如下:

由图可知,随机生成的100种不同方向的测线的扫测面面积均小于平行于等高线的测线扫测面面积,且角度呈现先增大后减小的趋势,在 β = 0 ° \beta=0° β=的时候出现最大值,均证明了测线平行等深线方向时为最佳布设方向。

测线布置模型建立

目标函数

根据题意,本题需要使得测线的总长度最短,结合上文论证最短测线布置方案,即可确定目标函数为:
min ⁡ N ⋅ L 1 \min N\cdot L_{1} minNL1

其中 L 1 L_1 L1为南北方向的长度,大小为 2 海里, N N N为布设的测线数量。

约束条件

  1. 根据题意,测线的测量面需要完全覆盖整个海域,即总测量面积减去重叠面积应该大于等于整个待测海域的面积,其约束方程为:

( ∑ i = 1 n W i − ∑ i = 1 n − 1 W i η i ) ⋅ L 1 ≥ L 2 cos ⁡ α ⋅ L 1 (\sum_{i=1}^nW_i-\sum_{i=1}^{n-1}W_i\eta_i)\cdot L_1\geq\frac{L_2}{\cos\alpha}\cdot L_1 (i=1nWii=1n1Wiηi)L1cosαL2L1

​ 其中 L 1 L_1 L1为南北方向的长度, L 2 L_2 L2为东西方向的长度, W i W_i Wi为对应测线的覆盖宽度, η i \eta_i ηi为表示第 i i i条测线的扫测条带与上一 个条带的重叠率。

  1. 根据题意,相邻条带之间的重叠率需要在的重叠率应该在 10%~20% 区间内,其约束方程为:
    10 % ≤ η i ≤ 20 % 10\%\leq\eta_i\leq20\% 10%ηi20%
    同时结合该海底矩形的特点,将重叠率公式进行更新为:
    η i = ( L i + W i w ) − ( L i + 1 − W i e ) W i \eta_i=\frac{(L_i+W_{iw})-(L_{i+1}-W_{ie})}{W_i} ηi=Wi(Li+Wiw)(Li+1Wie)
    其中, L i L_i Li表示沿海底坡度方向的位置,海底坡面与矩形海域水平面的夹角为海底坡度 α \alpha α,由几何关系得:
    y i = L i cos ⁡ α y_i=L_i\cos\alpha yi=Licosα
    W i w W_{iw} Wiw表示第 i i i 个扫测条带的西覆盖宽度; W i e W_{ie} Wie表示第 i i i 个扫测条带的东覆盖宽度,二者的计算方法在问题一的型中已给出,同时海水深度 D i D_i Di计算公式为与前文保持一致。
    W i w = D sin ⁡ ( π 2 − θ 2 − α ) ⋅ sin ⁡ θ 2 , W i e = D sin ⁡ ( π 2 − θ 2 + α ) ⋅ sin ⁡ θ 2 W i = W i w + W i e W_{iw}=\frac{D}{\sin(\frac{\pi}{2}-\frac{\theta}{2}-\alpha)}\cdot\sin\frac{\theta}{2}\quad, W_{ie}= \frac{D}{\sin(\frac{\pi}{2}-\frac{\theta}{2}+\alpha)}\cdot\sin\frac{\theta}{2}\\W_{i}=W_{iw}+W_{ie} Wiw=sin(2π2θα)Dsin2θ,Wie=sin(2π2θ+α)Dsin2θWi=Wiw+Wie

综上所述,确定测线位置的单目标优化模型为:
min ⁡ N ⋅ L 1 { ( ∑ i = 1 n W i − ∑ i = 1 n − 1 W i η i ) ⋅ L 1 ≥ L 2 cos ⁡ α ⋅ L 1 10 % ≤ η i ≤ 20 % η i = ( L i + W i ω ) − ( L i + 1 − W i ω ) W i D = L ⋅ tan ⁡ γ W i w = D sin ⁡ ( π 2 − θ 2 − α ) ⋅ sin ⁡ θ 2 W i e = D sin ⁡ ( π 2 − θ 2 + α ) ⋅ sin ⁡ θ 2 W i = W i w + W i e y i = L i cos ⁡ α (9) \begin{aligned}&\min N \cdot L_{1}\\&\begin{cases}(\sum_{i=1}^nW_i-\sum_{i=1}^{n-1}W_i\eta_i)\cdot L_1\geq\frac{L_2}{\cos\alpha}\cdot L_1\\10\%\leq\eta_{i}\leq20\%\\\eta_{i}=\frac{(L_{i}+W_{i\omega})-(L_{i+1}-W_{i\omega})}{W_{i}}\\D = L\cdot \tan\gamma\\W_{iw}=\frac{D}{\sin(\frac{\pi}{2}-\frac{\theta}{2}-\alpha)}\cdot\sin\frac{\theta}{2}\\W_{ie}=\frac{D}{\sin(\frac{\pi}{2}-\frac{\theta}{2}+\alpha)}\cdot\sin\frac{\theta}{2}\\W_{i}=W_{iw}+W_{ie}\\y_{i}=L_{i}\cos\alpha\end{cases}&\text{(9)}\end{aligned} minNL1 (i=1nWii=1n1Wiηi)L1cosαL2L110%ηi20%ηi=Wi(Li+W)(Li+1W)D=LtanγWiw=sin(2π2θα)Dsin2θWie=sin(2π2θ+α)Dsin2θWi=Wiw+Wieyi=Licosα(9)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值