考研数学积分学

一.一元函数积分学的概念与性质

1.不定积分

(1)原函数与不定积分

(2)原函数(不定积分)存在定理

  • 连续函数必有原函数
  • 含有第一类间断点和无穷间断点的函数,在包含该断点的区间内没有原函数
  • 震荡间断点不一定有
    • 震荡间断点不一定是间断的,如果间断点的函数极限和那点的函数值相等,那么说明不是真的断了,是连续的,所以有原函数
    • 如果间断点的函数极限和那点的函数值不等,那么说明是真的断了,不是连续的,所以没有原函数

(3)f(x)与f'(x)区别

  • 连续
    • f(x)在x=x0处的极限存在,不能得出f(x)在x=x0处连续
    • f(x)可导,且导函数的极限存在,能得出f‘(x)在x=x0处连续
  • 介值
    • f(x)存在,不能得出f(x)有介值性
    • f’(x)存在,能得出f‘(x)有介值性

2.定积分

(1)定义

重要公式

注:定积分的值只与被积函数及积分区间有关,而与积分变量的是谁无关

(2)存在定理

充分条件

  • f(x)在[a,b]上连续,则存在
  • f(x)在[a,b]上单调,则存在
  • f(x)在[a,b]上有界,且只有有限的间断点(不包含无穷间断点),则存在
  • f(x)在[a,b]上有有限的第一类间断点,则存在

必要条件

  • 可积函数必有界,若存在,则f(x)在[a,b]必有界

(3)性质

  • 当b = a时,=0;
  • 当b < a时,=-;(交换上下限填负号)
  • 性质

重要不等式

3.变限积分

(1)概念

(2)性质


偶函数的变限积分是奇函数,奇函数的变限积分是偶函数

4.反常积分

(1)概念

(2)判是否收敛

二.一元函数积分学的计算

1.基本积分公式

2.不定积分的积分法

3.定积分的积分法

4.变限积分的计算

5.反常积分的计算

三.一元函数积分学的应用(1)

1.平面图形的面积

2.旋转体的体积

3.函数的平均值

4.其他几何应用

四.一元函数积分学的应用(2)

1.积分等式

2.积分不等式

五.一元函数积分学的应用(3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Smile灬凉城666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值