上课听不懂,遂下来翻翻教材自学。
1 散度与通量,旋度与环量
散度与旋度分别是通量与环量的量纲——即:通量与环量看成一个整体,而散度与旋度是对应整体中一个小的组成部分,所以说散度与旋度是微分形式,通量与环量是积分形式
- 散度与通量
通量: Φ = ∯ S A ⃗ ⋅ d S ⃗ = ∭ V ∇ ⋅ A ⃗ ⋅ d V 通量:\Phi=\oiint\limits_{S}\vec{A}\cdot d\vec{S}=\iiint\limits_{V}\nabla\cdot\vec{A}\cdot dV 通量:Φ=S∬A⋅dS=V∭∇⋅A⋅dV
散度: d i v A ⃗ = ∇ ⋅ A ⃗ 散度:div\vec{A}=\nabla\cdot\vec{A} 散度:divA=∇⋅A
通量是 A ⃗ \vec{A} A的闭合曲面的面积,也是散度的体积分
散度可以看做一个一个点 - 旋度与环量
环量: Γ = ∮ l B ⃗ ⋅ d l ⃗ = ∬ S ∇ × B ⃗ ⋅ d S ⃗ 环量:\Gamma=\oint\limits_{l}\vec{B}\cdot d\vec{l}=\iint\limits_{S}\nabla\times\vec{B}\cdot d\vec{S} 环量:Γ=l∮B⋅dl=S∬∇×B⋅dS
旋度: r o t A ⃗ = ∇ × B ⃗ 旋度:rot\vec{A}=\nabla\times\vec{B} 旋度:rotA=∇×B
环量是 B ⃗ \vec{B} B的闭合曲线的线积分,也是旋度的面积分
旋度可以看做一个一个小电风扇
2 静电场
∇
⋅
E
⃗
=
{
0
,体外
ρ
ε
0
,体内
\nabla\cdot\vec{E}= \begin{cases} 0 ,体外\\ \frac{\rho}{\varepsilon_0},体内\\ \end{cases}
∇⋅E={0,体外ε0ρ,体内
∇
×
E
⃗
=
0
\nabla\times\vec{E}=0
∇×E=0
所以说:静电场是有散无旋场。同时说明:静电荷是静电场的通量源(
q
=
∫
V
ρ
d
V
q=\int\limits_{V}\rho dV
q=V∫ρdV),即:静电荷是静电场产生的原因
-
静电场的高斯定理
∫ V ∇ ⋅ E ⃗ ⋅ d V = ∯ S E ⃗ ⋅ d S ⃗ = 1 ε 0 ∫ V ρ ⋅ d V = q ε 0 \int\limits_{V}\nabla\cdot\vec{E}\cdot dV=\oiint\limits_{S}\vec{E}\cdot d\vec{S}=\frac{1}{\varepsilon_0}\int\limits_{V}\rho\cdot dV=\frac{q}{\varepsilon_0} V∫∇⋅E⋅dV=S∬E⋅dS=ε01V∫ρ⋅dV=ε0q -
电介质中静电场(多了极化电荷 q p q_p qp,极化强度矢量 P ⃗ \vec{P} P)
高斯定理改为了: ∯ S E ⃗ ⋅ d S ⃗ = q + q p ε 0 \oiint\limits_{S}\vec{E}\cdot d\vec{S}=\frac{q+q_p}{\varepsilon_0} S∬E⋅dS=ε0q+qp
推出
∯ S ε 0 E ⃗ ⋅ d S ⃗ = q + q p \oiint\limits_{S}\varepsilon_0\vec{E}\cdot d\vec{S}=q+q_p S∬ε0E⋅dS=q+qp
且根据
q p = − ∮ S P ⋅ d S ⃗ q_p=-\oint\limits_{S}P\cdot d\vec{S} qp=−S∮P⋅dS
则:
∯ S ( ε 0 E ⃗ + P ⃗ ) ⋅ d S ⃗ = q \oiint\limits_{S}(\varepsilon_0\vec{E}+\vec{P})\cdot d\vec{S}=q S∬(ε0E+P)⋅dS=q
其中电位移矢量为 D ⃗ = ε 0 E ⃗ + P ⃗ \vec{D}=\varepsilon_0\vec{E}+\vec{P} D=ε0E+P,则:
∯ S D ⃗ ⋅ d S ⃗ = q \oiint\limits_{S}\vec{D}\cdot d\vec{S}=q S∬D⋅dS=q
即:电位移矢量穿过任一闭合曲面的通量等于该闭合曲面的自由电荷量
∯ S D ⃗ ⋅ d S ⃗ = ∫ V ∇ ⋅ D ⃗ ⋅ d V = q = ∫ V ρ ⋅ d V \oiint\limits_{S}\vec{D}\cdot d\vec{S}=\int\limits_{V}\nabla\cdot\vec{D}\cdot dV=q=\int\limits_{V}\rho\cdot dV S∬D⋅dS=V∫∇⋅D⋅dV=q=V∫ρ⋅dV推出散度: ∇ ⋅ D ⃗ = ρ \nabla\cdot\vec{D}=\rho ∇⋅D=ρ
这里也可以看出来积分是 q q q(积分形式),被积函数是 ρ \rho ρ(也就是微分形式)
3 恒定磁场
∇
×
B
⃗
=
0
\nabla\times\vec{B}=0
∇×B=0
∇
×
B
⃗
=
μ
0
J
⃗
(安培环路定理微分形式)
\nabla\times\vec{B}=\mu_0\vec{J}(安培环路定理微分形式)
∇×B=μ0J(安培环路定理微分形式)
所以说:恒定磁场是有旋无散场。同时说明:恒定电流(
i
=
∫
S
J
⃗
⋅
d
S
⃗
i=\int\limits_{S}\vec{J}\cdot d\vec{S}
i=S∫J⋅dS,电流是电流密度的通量)是产生恒定磁场的涡旋源
- 磁介质中恒定磁场(电流密度矢量
J
M
⃗
\vec{J_M}
JM,磁化强度矢量
M
⃗
\vec{M}
M)
安培环路的积分形式为:
∮ l B ⃗ ⋅ d l ⃗ = μ 0 ( I + I M ) \oint\limits_{l}\vec{B}\cdot d\vec{l}=\mu_0(I+I_M) l∮B⋅dl=μ0(I+IM)
同上面静电场的推导过程,有磁场强度: H ⃗ = B ⃗ μ 0 − M ⃗ \vec{H}=\frac{\vec{B}}{\mu_0}-\vec{M} H=μ0B−M,所以有:
∮ l H ⃗ ⋅ d l ⃗ = I \oint\limits_{l}\vec{H}\cdot d\vec{l}=I l∮H⋅dl=I
微分形式有:
∫ S ∇ × H ⃗ = ∫ S J ⃗ ⋅ d S ⃗ \int\limits_{S}\nabla\times\vec{H}=\int\limits_{S}\vec{J}\cdot d\vec{S} S∫∇×H=S∫J⋅dS
推出: ∇ × H ⃗ = J ⃗ \nabla\times\vec{H}=\vec{J} ∇×H=J
4 电荷守恒定律
- (单位时间内)
闭合面
S
闭合面S
闭合面S 流出的电荷量 =
体积
V
体积V
体积V 内电荷的减少量
∯ S J ⃗ ⋅ d S ⃗ = − d d t ∫ V ρ d V \oiint\limits_{S}\vec{J}\cdot d\vec{S}=-\frac{d}{dt}\int\limits_{V}\rho dV S∬J⋅dS=−dtdV∫ρdV
推出:
∫ V ∇ ⋅ J ⃗ ⋅ d V = ∫ V − ∂ ρ ∂ t d V \int\limits_{V}\nabla\cdot\vec{J}\cdot dV=\int\limits_{V}-\frac{\partial \rho}{\partial t}dV V∫∇⋅J⋅dV=V∫−∂t∂ρdV
微分形式:
∇ ⋅ J ⃗ = − ∂ ρ ∂ t \nabla\cdot\vec{J}=-\frac{\partial \rho}{\partial t} ∇⋅J=−∂t∂ρ
当电磁场为恒定电磁场时: ∂ ρ ∂ t = 0 \frac{\partial \rho}{\partial t}=0 ∂t∂ρ=0,则 ∇ ⋅ J ⃗ = 0 \nabla\cdot\vec{J}=0 ∇⋅J=0,即恒定电磁场是无散场,同理时变电磁场为有散场
{ ∇ ⋅ D ⃗ = ρ ∇ ⋅ J ⃗ = − ∂ ρ ∂ t (电流连续性方程) \begin{cases} \nabla\cdot\vec{D}=\rho\\ \nabla\cdot\vec{J}=-\frac{\partial \rho}{\partial t}(电流连续性方程)\\ \end{cases} {∇⋅D=ρ∇⋅J=−∂t∂ρ(电流连续性方程)
得出:
∇ ⋅ J ⃗ = − ∇ ⋅ ∂ D ⃗ ∂ t \nabla\cdot\vec{J}=-\nabla\cdot\frac{\partial \vec{D}}{\partial t} ∇⋅J=−∇⋅∂t∂D
其中位移电流密度矢量: J d ⃗ = ∂ D ⃗ ∂ t \vec{J_d}=\frac{\partial \vec{D}}{\partial t} Jd=∂t∂D
则时变条件下的电流连续性方程:
∇ ⋅ ( J ⃗ + J d ⃗ ) = 0 \nabla\cdot(\vec{J}+\vec{J_d})=0 ∇⋅(J+Jd)=0
∇ × H ⃗ = J ⃗ \nabla\times\vec{H}=\vec{J} ∇×H=J被修正为 ∇ × H ⃗ = ( J ⃗ + J d ⃗ ) \nabla\times\vec{H}=(\vec{J}+\vec{J_d}) ∇×H=(J+Jd)
5 感应定律
感应电动势有:
E
i
n
=
−
d
Φ
d
t
=
−
d
d
t
∬
S
B
⃗
⋅
d
S
⃗
\mathcal E_{in}=-\frac{d\Phi}{dt}=-\frac{d}{dt}\iint\limits_{S}\vec{B}\cdot d\vec{S}
Ein=−dtdΦ=−dtdS∬B⋅dS
E
i
n
=
∮
l
E
i
n
⃗
⋅
d
l
⃗
\mathcal E_{in}=\oint\limits_{l}\vec{E_{in}}\cdot d\vec{l}
Ein=l∮Ein⋅dl
E
=
感应电场
E
i
n
+
库伦电场
E
C
E=感应电场E_{in}+库伦电场E_C
E=感应电场Ein+库伦电场EC
则
∬
S
∇
×
E
⃗
⋅
d
S
⃗
=
∬
S
-
∂
B
⃗
∂
t
⋅
d
S
⃗
\iint\limits_{S}\nabla\times \vec{E}\cdot d\vec{S}=\iint\limits_{S}-\frac{\partial \vec{B}}{\partial t}\cdot d\vec{S}
S∬∇×E⋅dS=S∬-∂t∂B⋅dS
则微分形式为:
∇
×
E
⃗
=-
∂
B
⃗
∂
t
\nabla\times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
∇×E=-∂t∂B
6 麦克斯韦方程组(重点)
{ ∇ × H ⃗ = J ⃗ + J d ⃗ = J ⃗ + ∂ D ⃗ ∂ t ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ ⋅ B ⃗ = 0 ∇ ⋅ D ⃗ = ρ \begin{cases} \nabla\times\vec{H}=\vec{J}+\vec{J_d}=\vec{J}+\frac{\partial \vec{D}}{\partial t}\\ \nabla\times \vec{E}=-\frac{\partial \vec{B}}{\partial t}\\ \nabla\cdot\vec{B}=0\\ \nabla\cdot\vec{D}=\rho\\ \end{cases} ⎩ ⎨ ⎧∇×H=J+Jd=J+∂t∂D∇×E=−∂t∂B∇⋅B=0∇⋅D=ρ
- 说明
式1:(电生磁)传导电流和时变电场 都要产生 磁场,都是磁场的涡旋源
式2:(磁生电)时变磁场 要产生 电场,是电场的涡旋源
式3:磁场是无散场,磁感应线是闭合曲线
式4:(电荷生电)电荷 要产生 电场,是电场的散度源
结论:
1、电场强度
E
⃗
\vec{E}
E 与 电位移
D
⃗
\vec{D}
D 的散度为
ρ
\rho
ρ ,通量为
q
q
q
2、磁感应强度
B
⃗
\vec{B}
B 与 磁场强度
H
⃗
\vec{H}
H 的旋度为 电流密度(体电流的面密度)
J
⃗
\vec{J}
J,环量为传导电流
I
I
I
7 电场强度 E ⃗ \vec{E} E 与 磁场强度 H ⃗ \vec{H} H 的关系
-
要求 E ⃗ \vec{E} E 到 H ⃗ \vec{H} H,现有 E ⃗ \vec{E} E 到 B ⃗ \vec{B} B的关系:
∇ × E ⃗ = − ∂ B ⃗ ∂ t \nabla\times \vec{E}=-\frac{\partial \vec{B}}{\partial t} ∇×E=−∂t∂B
又有 B ⃗ \vec{B} B 到 H ⃗ \vec{H} H的关系:
B ⃗ = μ 0 H ⃗ \vec{B}=\mu_0\vec{H} B=μ0H
得到:
(磁生电) ∇ × E ⃗ = − μ 0 ∂ H ⃗ ∂ t (磁生电)\nabla\times \vec{E}=-\mu_0\frac{\partial \vec{H}}{\partial t} (磁生电)∇×E=−μ0∂t∂H -
要求 H ⃗ \vec{H} H 到 E ⃗ \vec{E} E,现有 H ⃗ \vec{H} H 到 D ⃗ \vec{D} D的关系:
∇ × H ⃗ = J d ⃗ = ∂ D ⃗ ∂ t \nabla\times\vec{H}=\vec{J_d}=\frac{\partial \vec{D}}{\partial t} ∇×H=Jd=∂t∂D
又有 D ⃗ \vec{D} D 到 E ⃗ \vec{E} E的关系:
D ⃗ = ε 0 E ⃗ \vec{D}=\varepsilon_0\vec{E} D=ε0E
得到:
(电生磁) ∇ × H ⃗ = ε 0 ∂ E ⃗ ∂ t (电生磁)\nabla\times \vec{H}=\varepsilon_0\frac{\partial \vec{E}}{\partial t} (电生磁)∇×H=ε0∂t∂E