【电磁场与电磁波】散度与通量,旋度与环量

上课听不懂,遂下来翻翻教材自学。

1 散度与通量,旋度与环量

散度与旋度分别是通量与环量的量纲——即:通量与环量看成一个整体,而散度与旋度是对应整体中一个小的组成部分,所以说散度与旋度是微分形式,通量与环量是积分形式

  • 散度与通量
    通量: Φ = ∯ S A ⃗ ⋅ d S ⃗ = ∭ V ∇ ⋅ A ⃗ ⋅ d V 通量:\Phi=\oiint\limits_{S}\vec{A}\cdot d\vec{S}=\iiint\limits_{V}\nabla\cdot\vec{A}\cdot dV 通量:Φ=S A dS =VA dV
    散度: d i v A ⃗ = ∇ ⋅ A ⃗ 散度:div\vec{A}=\nabla\cdot\vec{A} 散度:divA =A
    通量是 A ⃗ \vec{A} A 的闭合曲面的面积,也是散度的体积分
    散度可以看做一个一个点
  • 旋度与环量
    环量: Γ = ∮ l B ⃗ ⋅ d l ⃗ = ∬ S ∇ × B ⃗ ⋅ d S ⃗ 环量:\Gamma=\oint\limits_{l}\vec{B}\cdot d\vec{l}=\iint\limits_{S}\nabla\times\vec{B}\cdot d\vec{S} 环量:Γ=lB dl =S×B dS
    旋度: r o t A ⃗ = ∇ × B ⃗ 旋度:rot\vec{A}=\nabla\times\vec{B} 旋度:rotA =×B
    环量是 B ⃗ \vec{B} B 的闭合曲线的线积分,也是旋度的面积分
    旋度可以看做一个一个小电风扇

2 静电场

∇ ⋅ E ⃗ = { 0 ,体外 ρ ε 0 ,体内 \nabla\cdot\vec{E}= \begin{cases} 0 ,体外\\ \frac{\rho}{\varepsilon_0},体内\\ \end{cases} E ={0,体外ε0ρ,体内
∇ × E ⃗ = 0 \nabla\times\vec{E}=0 ×E =0
所以说:静电场是有散无旋场。同时说明:静电荷是静电场的通量源( q = ∫ V ρ d V q=\int\limits_{V}\rho dV q=VρdV),即:静电荷是静电场产生的原因

  • 静电场的高斯定理
    ∫ V ∇ ⋅ E ⃗ ⋅ d V = ∯ S E ⃗ ⋅ d S ⃗ = 1 ε 0 ∫ V ρ ⋅ d V = q ε 0 \int\limits_{V}\nabla\cdot\vec{E}\cdot dV=\oiint\limits_{S}\vec{E}\cdot d\vec{S}=\frac{1}{\varepsilon_0}\int\limits_{V}\rho\cdot dV=\frac{q}{\varepsilon_0} VE dV=S E dS =ε01VρdV=ε0q

  • 电介质中静电场(多了极化电荷 q p q_p qp,极化强度矢量 P ⃗ \vec{P} P
    高斯定理改为了: ∯ S E ⃗ ⋅ d S ⃗ = q + q p ε 0 \oiint\limits_{S}\vec{E}\cdot d\vec{S}=\frac{q+q_p}{\varepsilon_0} S E dS =ε0q+qp
    推出
    ∯ S ε 0 E ⃗ ⋅ d S ⃗ = q + q p \oiint\limits_{S}\varepsilon_0\vec{E}\cdot d\vec{S}=q+q_p S ε0E dS =q+qp
    且根据
    q p = − ∮ S P ⋅ d S ⃗ q_p=-\oint\limits_{S}P\cdot d\vec{S} qp=SPdS
    则:
    ∯ S ( ε 0 E ⃗ + P ⃗ ) ⋅ d S ⃗ = q \oiint\limits_{S}(\varepsilon_0\vec{E}+\vec{P})\cdot d\vec{S}=q S (ε0E +P )dS =q
    其中电位移矢量为 D ⃗ = ε 0 E ⃗ + P ⃗ \vec{D}=\varepsilon_0\vec{E}+\vec{P} D =ε0E +P ,则:
    ∯ S D ⃗ ⋅ d S ⃗ = q \oiint\limits_{S}\vec{D}\cdot d\vec{S}=q S D dS =q
    即:电位移矢量穿过任一闭合曲面的通量等于该闭合曲面的自由电荷量
    ∯ S D ⃗ ⋅ d S ⃗ = ∫ V ∇ ⋅ D ⃗ ⋅ d V = q = ∫ V ρ ⋅ d V \oiint\limits_{S}\vec{D}\cdot d\vec{S}=\int\limits_{V}\nabla\cdot\vec{D}\cdot dV=q=\int\limits_{V}\rho\cdot dV S D dS =VD dV=q=VρdV推出散度: ∇ ⋅ D ⃗ = ρ \nabla\cdot\vec{D}=\rho D =ρ
    这里也可以看出来积分是 q q q(积分形式),被积函数是 ρ \rho ρ(也就是微分形式)

3 恒定磁场

∇ × B ⃗ = 0 \nabla\times\vec{B}=0 ×B =0
∇ × B ⃗ = μ 0 J ⃗ (安培环路定理微分形式) \nabla\times\vec{B}=\mu_0\vec{J}(安培环路定理微分形式) ×B =μ0J (安培环路定理微分形式)
所以说:恒定磁场是有旋无散场。同时说明:恒定电流( i = ∫ S J ⃗ ⋅ d S ⃗ i=\int\limits_{S}\vec{J}\cdot d\vec{S} i=SJ dS ,电流是电流密度的通量)是产生恒定磁场的涡旋源

  • 磁介质中恒定磁场(电流密度矢量 J M ⃗ \vec{J_M} JM ,磁化强度矢量 M ⃗ \vec{M} M
    安培环路的积分形式为:
    ∮ l B ⃗ ⋅ d l ⃗ = μ 0 ( I + I M ) \oint\limits_{l}\vec{B}\cdot d\vec{l}=\mu_0(I+I_M) lB dl =μ0(I+IM)
    同上面静电场的推导过程,有磁场强度: H ⃗ = B ⃗ μ 0 − M ⃗ \vec{H}=\frac{\vec{B}}{\mu_0}-\vec{M} H =μ0B M ,所以有:
    ∮ l H ⃗ ⋅ d l ⃗ = I \oint\limits_{l}\vec{H}\cdot d\vec{l}=I lH dl =I
    微分形式有:
    ∫ S ∇ × H ⃗ = ∫ S J ⃗ ⋅ d S ⃗ \int\limits_{S}\nabla\times\vec{H}=\int\limits_{S}\vec{J}\cdot d\vec{S} S×H =SJ dS
    推出: ∇ × H ⃗ = J ⃗ \nabla\times\vec{H}=\vec{J} ×H =J

4 电荷守恒定律

  • (单位时间内) 闭合面 S 闭合面S 闭合面S 流出的电荷量 = 体积 V 体积V 体积V 内电荷的减少量
    ∯ S J ⃗ ⋅ d S ⃗ = − d d t ∫ V ρ d V \oiint\limits_{S}\vec{J}\cdot d\vec{S}=-\frac{d}{dt}\int\limits_{V}\rho dV S J dS =dtdVρdV
    推出:
    ∫ V ∇ ⋅ J ⃗ ⋅ d V = ∫ V − ∂ ρ ∂ t d V \int\limits_{V}\nabla\cdot\vec{J}\cdot dV=\int\limits_{V}-\frac{\partial \rho}{\partial t}dV VJ dV=VtρdV
    微分形式:
    ∇ ⋅ J ⃗ = − ∂ ρ ∂ t \nabla\cdot\vec{J}=-\frac{\partial \rho}{\partial t} J =tρ
    当电磁场为恒定电磁场时: ∂ ρ ∂ t = 0 \frac{\partial \rho}{\partial t}=0 tρ=0,则 ∇ ⋅ J ⃗ = 0 \nabla\cdot\vec{J}=0 J =0,即恒定电磁场是无散场,同理时变电磁场为有散场
    { ∇ ⋅ D ⃗ = ρ ∇ ⋅ J ⃗ = − ∂ ρ ∂ t (电流连续性方程) \begin{cases} \nabla\cdot\vec{D}=\rho\\ \nabla\cdot\vec{J}=-\frac{\partial \rho}{\partial t}(电流连续性方程)\\ \end{cases} {D =ρJ =tρ(电流连续性方程)
    得出:
    ∇ ⋅ J ⃗ = − ∇ ⋅ ∂ D ⃗ ∂ t \nabla\cdot\vec{J}=-\nabla\cdot\frac{\partial \vec{D}}{\partial t} J =tD
    其中位移电流密度矢量: J d ⃗ = ∂ D ⃗ ∂ t \vec{J_d}=\frac{\partial \vec{D}}{\partial t} Jd =tD
    则时变条件下的电流连续性方程:
    ∇ ⋅ ( J ⃗ + J d ⃗ ) = 0 \nabla\cdot(\vec{J}+\vec{J_d})=0 (J +Jd )=0
    ∇ × H ⃗ = J ⃗ \nabla\times\vec{H}=\vec{J} ×H =J 被修正为 ∇ × H ⃗ = ( J ⃗ + J d ⃗ ) \nabla\times\vec{H}=(\vec{J}+\vec{J_d}) ×H =(J +Jd )

5 感应定律

感应电动势有:
E i n = − d Φ d t = − d d t ∬ S B ⃗ ⋅ d S ⃗ \mathcal E_{in}=-\frac{d\Phi}{dt}=-\frac{d}{dt}\iint\limits_{S}\vec{B}\cdot d\vec{S} Ein=dtdΦ=dtdSB dS
E i n = ∮ l E i n ⃗ ⋅ d l ⃗ \mathcal E_{in}=\oint\limits_{l}\vec{E_{in}}\cdot d\vec{l} Ein=lEin dl
E = 感应电场 E i n + 库伦电场 E C E=感应电场E_{in}+库伦电场E_C E=感应电场Ein+库伦电场EC
∬ S ∇ × E ⃗ ⋅ d S ⃗ = ∬ S - ∂ B ⃗ ∂ t ⋅ d S ⃗ \iint\limits_{S}\nabla\times \vec{E}\cdot d\vec{S}=\iint\limits_{S}-\frac{\partial \vec{B}}{\partial t}\cdot d\vec{S} S×E dS =StB dS
则微分形式为:
∇ × E ⃗ =- ∂ B ⃗ ∂ t \nabla\times \vec{E}=-\frac{\partial \vec{B}}{\partial t} ×E =-tB

6 麦克斯韦方程组(重点)

{ ∇ × H ⃗ = J ⃗ + J d ⃗ = J ⃗ + ∂ D ⃗ ∂ t ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ ⋅ B ⃗ = 0 ∇ ⋅ D ⃗ = ρ \begin{cases} \nabla\times\vec{H}=\vec{J}+\vec{J_d}=\vec{J}+\frac{\partial \vec{D}}{\partial t}\\ \nabla\times \vec{E}=-\frac{\partial \vec{B}}{\partial t}\\ \nabla\cdot\vec{B}=0\\ \nabla\cdot\vec{D}=\rho\\ \end{cases} ×H =J +Jd =J +tD ×E tB B =0D =ρ

  • 说明
    式1:(电生磁)传导电流和时变电场 都要产生 磁场,都是磁场的涡旋源
    式2:(磁生电)时变磁场 要产生 电场,是电场的涡旋源
    式3:磁场是无散场,磁感应线是闭合曲线
    式4:(电荷生电)电荷 要产生 电场,是电场的散度源

结论:
1、电场强度 E ⃗ \vec{E} E 与 电位移 D ⃗ \vec{D} D 的散度为 ρ \rho ρ ,通量为 q q q
2、磁感应强度 B ⃗ \vec{B} B 与 磁场强度 H ⃗ \vec{H} H 的旋度为 电流密度(体电流的面密度) J ⃗ \vec{J} J ,环量为传导电流 I I I

7 电场强度 E ⃗ \vec{E} E 与 磁场强度 H ⃗ \vec{H} H 的关系

  • 要求 E ⃗ \vec{E} E H ⃗ \vec{H} H ,现有 E ⃗ \vec{E} E B ⃗ \vec{B} B 的关系:
    ∇ × E ⃗ = − ∂ B ⃗ ∂ t \nabla\times \vec{E}=-\frac{\partial \vec{B}}{\partial t} ×E tB
    又有 B ⃗ \vec{B} B H ⃗ \vec{H} H 的关系:
    B ⃗ = μ 0 H ⃗ \vec{B}=\mu_0\vec{H} B =μ0H
    得到:
    (磁生电) ∇ × E ⃗ = − μ 0 ∂ H ⃗ ∂ t (磁生电)\nabla\times \vec{E}=-\mu_0\frac{\partial \vec{H}}{\partial t} (磁生电)×E μ0tH

  • 要求 H ⃗ \vec{H} H E ⃗ \vec{E} E ,现有 H ⃗ \vec{H} H D ⃗ \vec{D} D 的关系:
    ∇ × H ⃗ = J d ⃗ = ∂ D ⃗ ∂ t \nabla\times\vec{H}=\vec{J_d}=\frac{\partial \vec{D}}{\partial t} ×H =Jd =tD
    又有 D ⃗ \vec{D} D E ⃗ \vec{E} E 的关系:
    D ⃗ = ε 0 E ⃗ \vec{D}=\varepsilon_0\vec{E} D =ε0E
    得到:
    (电生磁) ∇ × H ⃗ = ε 0 ∂ E ⃗ ∂ t (电生磁)\nabla\times \vec{H}=\varepsilon_0\frac{\partial \vec{E}}{\partial t} (电生磁)×H ε0tE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值