实现线性代数行列式求值

很好理解就是运用递归还有函数的套用

话不多说直接上代码:

#计算代数余子式的函数

def getsubmatrix(matrix,submatrix,row,col,n):
    p=0
    q=0
    for i in range (n):
        for j in range(n):
            if i!=row and j!=col:
                submatrix[p][q]=matrix[i][j]
                q+=1
                if q==n-1:
                    q=0
                    p+=1


#计算行列式的函数
def deter(matrix,n):
    submatrix =[[0]*(n-1)]*(n-1)#等价于 submatrix = [[0] * (n-1) for k in range(n-1)]
    det=0
    sign=1
    if n==1:#递归终止条件:1 阶矩阵的行列式为其唯一元素的值
        return matrix[0][0]
    else:
        for i in range(n):
            getsubmatrix(matrix,submatrix,0,i,n)#计算代数余子式的子矩阵
            det+=sign*matrix[0][i]*deter(submatrix,n-1)#递归计算行列式的值
            sign=-sign#更新符号位
    return det


while True:
    N = 10
    print("请输入方阵的阶数:")
    n = int(input())
    if n > N or n <= 0:
        print('错误!请重新输入一个合法的阶数(1-%d)。\n ' % N)
    else:
        print("请输入 %d 阶方阵的元素:\n" % n)
        matrix = [[0] * n for k in range(n)]
        #print(matrix)
        for i in range(n):
            for j in range(n):
                print("元素 a%d%d: ", i + 1, j + 1)
                m = int(input())
                matrix[i][j] = m
        # print(matrix)
        det = deter(matrix, n)
        print('\n 行列式的值为:%d\n' % det)

若觉得不错点个赞🤓

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值