大模型通常指的是具有极其庞大参数规模、先进架构和广泛适用性的机器学习模型。这类模型因其前所未有的规模和强大的通用性而备受关注,下面是大模型的一些显著特点:
-
大规模参数量:
大模型的核心特征之一就是其庞大的参数规模,动辄几十亿、上百亿甚至上千亿个参数。这种规模上的突破有助于模型捕捉更复杂的模式和深层次的规律,从而提升模型的表达能力和泛化能力。 -
多层神经网络架构:
大模型一般基于深度神经网络构建,其层数多、结构复杂,包括但不限于Transformer、卷积神经网络(CNN)等,能够对输入数据进行多层次的抽象和变换。 -
涌现能力与泛化性能:
大模型在经过大规模数据训练后,能在未经见过的场景下表现出良好的泛化能力,即在处理未在训练集中出现过的任务时仍能给出合理的答案或结果,体现出较强的“涌现”能力。 -
多任务学习与迁移学习:
大模型能够在同一模型框架下同时学习解决多种任务,具有很好的迁移学习能力,通过微调少量参数就能应用于新任务,节省了大量的训练成本。 -
自然语言理解和生成:
在自然语言处理(NLP)领域的大模型如GPT-3、BERT、Bard等,能够理解文本、生成文本、问答、翻译等多种任务,展现了极高的语言理解与生成水平。 -
视觉模型与跨模态学习:
视觉大模型如DALL-E、CLIP等能够处理图像、视频等多媒体数据,甚至实现跨模态的学习ÿ