convE:Convolutional 2D Knowledge Graph Embeddings

该博客探讨了知识图谱的嵌入学习方法,包括encodingcomponent和scoringcomponent的步骤。通过实体和关系的变形与拼接,结合卷积和全链接层,模型能对三元组进行打分,预测概率。数据集如WN18、WN18RR、FB15k和FB15k-237用于评估模型性能,重点关注长距离依赖和test leakage问题。
摘要由CSDN通过智能技术生成

思路:

1.encoding component 嵌入层

S,O -(embedding)->Es,Eo

2.scoring component 打分函数

模型结构图

1和2步实体和关系嵌入的变形和拼接

3.卷积后全链接

4.和实体矩阵相乘

5.sigmoid后给出概率

打分函数

数据集介绍

  • WN18是WordNet的子集,包括18种关系和40943个实体,且其三元组大部分是上下位关系,这个数据集有test leakage问题,因此又出现了WN18RR
  • FB15k是Freebase的子集,包括14951个实体和1345个关系,这个数据集有test leakage问题,因此有人将其中的反向关系移除之后生成了数据集FB15k-237
  • YAGO3-10是YAGO3的子集,包括123182个实体和37个关系,其特点是每个实体至少有10个关系
  • Countries是一个benchmark数据集,用来衡量模型在学习实体和关系之间长距离依赖方面的能力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值