机器学习之线性代数基础一 矩阵乘法、秩、特征值、特征向量的几何意义

本文探讨了矩阵乘法的几何意义,包括矩阵与向量相乘如何改变坐标系。接着,解释了矩阵的秩,特别是方阵和非方阵的秩,以及秩与空间维度的关系。最后,介绍了矩阵的特征值和特征向量,揭示了它们在线性变换中的作用。
摘要由CSDN通过智能技术生成

  写篇文章把自己对矩阵的理解记录一下,有不对的地方欢迎指正。为简单、直观、可视化起见,我们只以简单的二维和三维空间为例。高维空间也是同样的道理,只是不能可视化,只能通过数学公式来证明。

1. 矩阵乘法

  矩阵乘法来源于线性方程组的求解,为了方便起见,从二维说起。
  通常,我们在提到坐标第一反应就是直角坐标系中的横纵坐标轴所对应的单位向量,向量 x x x表示成如下形式会更明显,
[ x 1 x 2 ] = x 1 [ 1 0 ] + x 2 [ 0 1 ] \left[ \begin{matrix} x_1\\ x_2 \end{matrix} \right] = x_1\left[ \begin{matrix} 1\\ 0 \end{matrix} \right] +x_2\left[ \begin{matrix} 0\\ 1 \end{matrix} \right] [x1x2]=x1[10]+x2[01]   那么矩阵与向量相乘会发生什么呢,下面是一个简单二维方阵与一个二维向量相乘,
(1) A x = [ a 1 b 1 a 2 b 2 ] [ x 1 x 2 ] Ax=\left[ \begin{matrix} a_1& b_1 \\ a_2& b_2 \end{matrix} \right] \left[ \begin{matrix} x_1\\ x_2 \end{matrix} \right] \tag{1} Ax=[a1a2b1b2][x1x2](1) 对式(1)进行简单的变换,可以写成另外一种形式,
(2) A x = x 1 [ a 1 a 2 ] + x 2 [ b 1 b 2 ] Ax=x_1\left[ \begin{matrix} a_1 \\ a_2 \end{matrix}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值