tick数据研究

本文探讨了如何从Tick数据生成分钟Bar,重点分析了Tick数据的特性,包括交易所提供的非真正Tick数据和Wind上的完美Tick数据。在生成Bar的过程中,提到了分钟Bar时间戳的差异,并讨论了实时Tick数据质量的影响因素,如处理速度和CTP服务器的实时负载。作者通过使用vnpy的CTP接口接收数据,发现了一些非交易时间的Tick数据,需要在处理时进行剔除。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      经常听见tick数据,回测的时候也用过,但是还真的没有自己去处理过tick数据,据说tick数据有很多坑,所以打算自己研究一下。首先的第一步就是先拿正常的tick数据来生成bar,从而能够理解一些细节,然后就是自己用ctp去接收tick数据,看看ctp有没有坑。

      这里,完美的tick数据是wind上的。

      这是wind上面导出来的,看起来还是比较正常的,反正一秒两个数据嘛。毕竟我们知道,咱们交易所给我们的数据不是真正的tick,而是snapshot,说白了就是500毫秒一次切片。一切的行情软件,其实都是根据tick数据来实现的。

      tick数据当然还有别的东西,比如ask、bid但是,最重要的还是last_price和volume。last price当然可以理解,切片时候的成交价格嘛,至于volume,我们来看一下曲线:

       所以,tick数据的volume是累计成交量,而一天的开始是九点的夜盘开始。当然没有夜盘的品种当然就是第二天早上九点了。

      那么怎么变成分钟数据呢?也就是tick变成bar。

#encoding=utf-8
import pandas as pd
from matplotlib import pyplot as plt
import matplotlib.finance as mpf
from matplotlib.pylab import date2num
tick_df = pd.read_hdf('rb_tick.h5')


class mBar(object):
    def __init__(self):
        """Constructor"""
        self.open = None
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱塘小甲子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值