【CSDN AI周刊】第21期 | CCTC 2017中国云计算技术大会在京成功举办

2017年中国云计算技术大会(CCTC2017)在京召开,聚焦人工智能前沿技术与应用实践。会上,阿里巴巴、京东、IBM等企业分享了智能人机对话、感知技术、TensorFlow在金融科技的应用等主题。第四范式工程师深入探讨了大规模分布式机器学习系统的挑战与解决方案。
摘要由CSDN通过智能技术生成

CCTC 2017


CCTC 2017相关链接:

直播回放:http://v.csdn.hudong.com/CCTC2017
专题报道:http://special.csdncms.csdn.net/CCTC2017/
PPT下载:http://download.csdn.net/meeting/meeting_detail/29

TensorFlow在金融科技应用,以及大规模分布式机器学习系统最佳实践

5月18日—19日,CCTC 2017中国云计算技术大会(Cloud Computing Technology Conference 2017,简称CCTC 2017)在北京朝阳门悠唐皇冠假日酒店隆重召开。

5月18日下午,人工智能专场在PPmoney大数据算法总监黄文坚的主持下开场,来自阿里巴巴iDST资深专家千诀,将带来阿里在智能人机对话方向的思考;京东集团感知识别研发总监陈宇就智能感知技术,包括图像,视频语音如何在京东的业务场景中落地展开分享;另外,IBM GBS Watson高级顾问金杰带来Watson的应用;PPmoney大数据算法总监黄文坚从TensorFlow在金融科技领域的应用进行探讨;第四范式算法研发工程师涂威威则在大规模分布式机器学习系统的设计和应用经验方面展开独到的实战分享。

大规模机器学习系统中的No Free Lunch

5月18日,由CSDN出品的2017中国云计算技术大会(简称CCTC,Cloud Computing Technology Conference)在北京盛大召开,第四范式机器学习算法研发工程师涂威威出席人工智能专场并作主题演讲。

作为第四范式•先知平台核心机器学习框架GDBT的设计者,涂威威在大规模分布式机器学习系统架构、机器学习算法设计和应用等方面有深厚积累。演讲中,涂威威表示,现在有越来越多的企业开始利用机器学习技术,把数据转换成智能决策引擎。企业机器学习应用系统中的核心模型训练系统有着什么样的设计和优化的考虑?与教科书中的机器学习应用相比,企业实际的机器学习应用中有哪些容易被人忽略的陷阱?涂威威对此作了经验分享,同时给出了一些可供参考的解决方案。


《程序员》


无人驾驶中的决策规划控制技术

无人车作为一个复杂软硬件结合系统,其安全可靠运行需要车载硬件、传感器集成、感知预测,以及控制规划等多个模块的协同配合工作。作者认为最关键的部分是感知预测和决策控制规划的紧密配合。狭义上的决策规划控制部分,包含了无人车行为决策(Behavior Decision)、动作规划(Motion Planning), 以及反馈控制(Feedback Control)这三个模块。而从更宽泛的概念来说,无人车的决策规划控制模块,紧密依赖于上游的路由寻径(Routing)以及交通预测(Prediction)的计算结果,所以本文也对路由寻径和交通预测模块进行介绍。


观点


沈向洋谈微软人工智能——增强人类智慧

今天,微软的每一件产品和服务都在融入人工智能,从Xbox到Windows,从必应搜索到Office。

在西雅图召开的Build 2017大会上,沈向洋分享了微软关于人工智能的愿景:将人工智能带给每个人,从开发者到数据科学家,从技术爱好者到学生。

杨强教授漫谈《西部世界》、生成式对抗网络及迁移学习

近日,杨强教授在[范式大学]内部课程中,与大家分享了他在 “生成式对抗网络模型“ 和迁移学习等领域的独特见解和最新思考。

有些人看过电视剧《西部世界》,在《西部世界》里,你可能问的一个关键问题是什么?就是当剧中的人们,其中任何一个人走到你面前,你能否区分出他/她是个真人? 你会问:咦,这不是图灵测试要解决的问题吗? 是的。 问题是,如果《西部世界》里的这些机器人已经通过了图灵测试,你又如何区分他/她们呢?

刘少山谈无人驾驶的未来

本文先从无人驾驶的商业前景、无人驾驶面临的发展障碍、无人车行业发展、全球化下的无人驾驶四个方面出发,分析未来无人驾驶的发展和即将面临的问题。最后,将给出无人驾驶发展的时间线,揭示在即将到来的未来二十年内无人驾驶的走势。

李开复哥大毕业演讲:工程师的AI银河系漫游指南

创新工场创始人兼CEO、人工智能工程院院长李开复近日在纽约哥伦比亚大学工程学院向2017届毕业生们发表了题为《一个工程师的人工智能银河系漫游指南》毕业演讲。

作为哥大83届毕业生,李开复表示他受益于这所大学年轻、活泼、新锐、自由的学风,在演讲中,他回忆了哥大带给他的成长和美好,并热切希望未来的工程师们拥抱必将到来的人工智能、把职业选择对准人工智能赛道;肩负起工程师的使命,追随自己的内心,让未来的10年成为生命中最辉煌的10年。


技术


市值250亿的特征向量——谷歌背后的线性代数

20世纪90年代,谷歌公司上市并很快成为最具影响力的搜索引擎,其背后的神奇之处在于PageRank算法。PageRank算法将每个网页的重要性进行量化,从而使其具有可排序性(建立了偏序关系),这样使用户更早地获取到最重要、最相关的网页信息。

这篇文章将解释谷歌计算网页重要性排序的核心思想。这个核心思想又必然地成为了线性代数的华丽的应用。

到底什么是生成式对抗网络GAN?

以图像生成模型举例,假设我们有一个图片生成模型(generator),它的目标是生成一张真实的图片。与此同时我们有一个图像判别模型(discriminator),它的目标是能够正确判别一张图片是生成出来的还是真实存在的。

那么如果我们把刚才的场景映射成图片生成模型和判别模型之间的博弈,就变成了如下模式:生成模型生成一些图片->判别模型学习区分生成的图片和真实图片->生成模型根据判别模型改进自己,生成新的图片->····

图像分类 | 深度学习PK传统机器学习

目前,许多研究者使用CNN等深度学习模型进行图像分类;另外,经典的KNN和SVM算法也取得不错的结果。然而,我们似乎无法断言,哪种方法对于图像分来问题效果最佳。

本文展现了一个项目的具体细节,在此项目中,作者将业内普遍用于图像分类的CNN和迁移学习算法与KNN,SVM,BP神经网络进行比较。

从0到1走进 Kaggle

本文以Kaggle竞赛中一个具体的问题(房价预测)为例,带你一览参加Kaggle竞赛的具体流程。对于中级选手,本文阐释了一个使结果更优的调参方式。

如何通过Keras来掌握深度学习

本文作者是一位教授深度学习的老师。传授深度学习知识既是他养家糊口的职业(Kaggle比赛获胜队伍的教练),也是他在波兰儿童基金会志愿者工作的一部分。因此,他打算和我们分享一些学习和教授深度学习知识时的心得。本文并不会具体讲解某个神经网络模型,而是总览性的介绍。

人工智能 & 机器学习技术在电商场景下的应用

日前,《尽在双11》人工智能部分执笔人&阿里技术专家 乐田 与 仁重 就 “人工智能/机器学习技术在电商场景下的应用” 问题在OSCHINA与大家开展了问答活动。本文整理了两位老师在开源中国高手问答中的精彩问答。

【CSDN AI周刊】点评本周热辣新闻、新鲜案例、技术博客。订阅请点击这里

若您有希望与开发者分享的AI实施案例、资料整理、学习笔记、趣闻妙谈,请发送邮件至wangyi@csdn.net,期待您的声音。


图片描述

图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值