预备知识
- 高斯分布
一维正态分布
- PS:
- 之前一直比较纠结,最大似然估计的定义为什么是概率密度函数(或概率质量函数)的累积,看了上面的似然函数中的计算实例才逐渐明白。似然函数取得最大值表示相应的参数能够使得统计模型最为合理。
线性模型
线性回归是依据样本数据上抽取的特征,预测连续值结果。简单的例子如依据身高去预测体重,如实验室中根据有色物质浓度得到吸光度曲线,再根据未知浓度有色物质吸光度得到其浓度,如上图所示。稍复杂点的如已知房子的很多特征,房子面积、卧室数目、房子所在街道、小区等,去预测房价。
假设有份房价预测数据,我们有n个特征(房子面积,卧室数量…),m个样本(房子1,房子2…),θ1为房子面积系数,θ2为卧室数量系数…,hθ(x)表示最后的房价,通过线性回归,我们可以得到以下公式:
h
θ
(
x
)
=
θ
0
x
0
+
θ
1
x
1
+
.
.
.
+
θ
n
x
x
=
θ
T
X
h_{\theta}(x)=\theta_0x_0+\theta_1x_1+...+\theta_nx_x=\boldsymbol{\theta}^T\boldsymbol{X}
hθ(x)=θ0x0+θ1x1+...+θnxx=θTX
x
0
x_0
x0为1,
θ
0
θ_0
θ0即代表常数项,
θ
θ
θ和
X
X
X默认为列向量,所以
θ
θ
θ需要转置乘以
X
X
X再加,使用矩阵是因为矩阵运算高效。
误差项分析
真实值和预测值之间肯定是存在差异的(用ε来表示误差)。对于每个样本:
y
(
i
)
=
θ
T
x
(
i
)
+
ε
(
i
)
y^{(i)}=\boldsymbol{\theta }^Tx^{(i)}+\varepsilon^{(i)}
y(i)=θTx(i)+ε(i)
统计学家对误差项做了符合普遍规律的假设,即误差项ε是独立且具有相同的分布,服从均值为0方差为ε的高斯分布。
独立: 如果是预测房价:房屋1的价格和房屋2的价格是没有关系的,样本之间互相不会影响。
同分布: 如果是预测房价:每个房子的背景以及自身的价格变量必须相同,不能房子1是上海的,房子2是新疆的。
推导
(1) 预测值与误差: y ( i ) = θ T x ( i ) + ε ( i ) y^{(i)}=\boldsymbol{\theta }^Tx^{(i)}+\varepsilon^{(i)} y(i)=θTx(i)+ε(i)
(2) 由于误差服从高斯分布: p ( ε ( i ) ) = 1 2 π σ exp ( − ( ε ( i ) ) 2 2 σ 2 ) p\left( \varepsilon ^{(i)} \right) =\frac{1}{\sqrt{2\pi}\sigma}\exp \left( \frac{-\left( \varepsilon ^{(i)} \right) ^2}{2\sigma ^2} \right) p(ε(i))=2πσ1exp(2σ2−(ε(i))2)
将(1)代入(2): p ( y ( i ) ∣ x ( i ) , θ ) = 1 2 π σ exp ( − ( y ( i ) − x ( i ) ) 2 2 σ 2 ) p\left( y^{(i)}|x^{(i)},\theta \right) =\frac{1}{\sqrt{2\pi}\sigma}\exp \left( \frac{-\left( y^{(i)}-x^{(i)} \right) ^2}{2\sigma ^2} \right) p(y(i)∣x(i),θ)=2πσ1exp(2σ2−(y(i)−x(i))2)
似然函数:
L
(
θ
)
=
Π
m
i
=
1
p
(
y
(
i
)
∣
x
(
i
)
;
θ
)
=
Π
m
i
=
1
1
2
π
σ
exp
(
−
(
y
(
i
)
−
θ
T
x
(
i
)
)
2
2
σ
2
)
L\left( \theta \right) =\underset{i=1}{\overset{m}{\Pi}}p\left( y^{(i)}|x^{(i)};\theta \right) =\underset{i=1}{\overset{m}{\Pi}}\frac{1}{\sqrt{2\pi}\sigma}\exp \left( -\frac{\left( y^{(i)}-\boldsymbol{\theta }^Tx^{(i)} \right) ^2}{2\sigma ^2} \right) \ \
L(θ)=i=1Πmp(y(i)∣x(i);θ)=i=1Πm2πσ1exp⎝⎜⎛−2σ2(y(i)−θTx(i))2⎠⎟⎞
累乘难求最大值,于是引入对数
对数似然函数:
l
(
θ
)
=
log
(
L
(
θ
)
)
=
log
(
Π
m
i
=
1
1
2
π
σ
exp
(
−
(
y
(
i
)
−
θ
T
x
(
i
)
)
2
2
σ
2
)
)
l\left( \theta \right) =\log \left( L\left( \theta \right) \right) =\log \left( \underset{i=1}{\overset{m}{\Pi}}\frac{1}{\sqrt{2\pi}\sigma}\exp \left( -\frac{\left( y^{(i)}-\boldsymbol{\theta }^Tx^{(i)} \right) ^2}{2\sigma ^2} \right) \right)
l(θ)=log(L(θ))=log⎝⎜⎛i=1Πm2πσ1exp⎝⎜⎛−2σ2(y(i)−θTx(i))2⎠⎟⎞⎠⎟⎞
l
(
θ
)
=
∑
i
=
1
m
log
(
1
2
π
σ
)
−
∑
i
=
1
m
(
y
(
i
)
−
θ
T
x
(
i
)
)
2
2
σ
2
l\left( \theta \right) =\sum\limits_{i=1}^m{\log \left( \frac{1}{\sqrt{2\pi}\sigma} \right)}-\sum\limits_{i=1}^m{\frac{\left( y^{(i)}-\boldsymbol{\theta }^Tx^{(i)} \right) ^2}{2\sigma ^2}}
l(θ)=i=1∑mlog(2πσ1)−i=1∑m2σ2(y(i)−θTx(i))2
l
(
θ
)
=
∑
i
=
1
m
log
(
1
2
π
σ
)
−
1
σ
2
⋅
1
2
⋅
∑
i
=
1
m
(
y
(
i
)
−
θ
T
x
(
i
)
)
2
l\left( \theta \right) =\sum\limits_{i=1}^m{\log \left( \frac{1}{\sqrt{2\pi}\sigma} \right)}-\frac{1}{\sigma ^2}\cdot \frac{1}{2}\cdot \sum\limits_{i=1}^m{\left( y^{(i)}-\boldsymbol{\theta }^Tx^{(i)} \right) ^2}
l(θ)=i=1∑mlog(2πσ1)−σ21⋅21⋅i=1∑m(y(i)−θTx(i))2
因为
∑
i
=
1
m
log
(
1
2
π
σ
)
\sum\limits_{i=1}^m{\log \left( \frac{1}{\sqrt{2\pi}\sigma} \right)}
i=1∑mlog(2πσ1)是常数,所以只要求
1
σ
2
⋅
1
2
⋅
∑
i
=
1
m
(
y
(
i
)
−
θ
T
x
(
i
)
)
2
\frac{1}{\sigma ^2}\cdot \frac{1}{2}\cdot \sum\limits_{i=1}^m{\left( y^{(i)}-\boldsymbol{\theta }^Tx^{(i)} \right) ^2}
σ21⋅21⋅i=1∑m(y(i)−θTx(i))2最小就好了。
所以,我们定义损失函数: 损失函数: J ( θ ) = 1 2 ∑ i = 1 m ( y i − θ T x i ) 2 \text{损失函数:}J\left( \theta \right) =\frac{1}{2}\sum\limits_{i=1}^m{\left( y^i-\boldsymbol{\theta }^Tx^i \right) ^2} 损失函数:J(θ)=21i=1∑m(yi−θTxi)2 , 1 2 \frac{1}{2} 21保留是为了后续求导系数约分
其中:
x
(
i
)
x^{(i)}
x(i)表示向量x中的第i个元素
y
(
i
)
y^{(i)}
y(i)表示向量y中的第i个元素
下面使用矩阵计算,因为使用矩阵的效率更高。
J
(
θ
)
=
1
2
(
Y
−
θ
X
)
T
(
Y
−
θ
X
)
J\left( \theta \right) =\frac{1}{2}\left( \boldsymbol{Y}-\boldsymbol{\theta X} \right) ^T\left( \boldsymbol{Y}-\boldsymbol{\theta X} \right)
J(θ)=21(Y−θX)T(Y−θX)
=
1
2
(
Y
T
−
X
T
θ
T
)
(
Y
−
θ
X
)
=\frac{1}{2}\left( \boldsymbol{Y}^T-\boldsymbol{X}^T\boldsymbol{\theta }^T \right) \left( \boldsymbol{Y}-\boldsymbol{\theta X} \right)
=21(YT−XTθT)(Y−θX)
=
1
2
(
Y
T
Y
−
X
T
θ
T
Y
−
Y
T
θ
X
+
X
T
θ
T
θ
X
)
=\frac{1}{2}\left( \boldsymbol{Y}^T\boldsymbol{Y}-\boldsymbol{X}^T\boldsymbol{\theta }^T\boldsymbol{Y}-\boldsymbol{Y}^T\boldsymbol{\theta X}+\boldsymbol{X}^T\boldsymbol{\theta }^T\boldsymbol{\theta X} \right)
=21(YTY−XTθTY−YTθX+XTθTθX)
对
θ
T
求偏导,令其为零:
∇
J
(
θ
)
=
1
2
(
−
X
T
Y
−
X
T
Y
+
2
θ
X
T
X
)
=
0
\text{对}\boldsymbol{\theta }^T\text{求偏导,令其为零:}\nabla J\left( \theta \right) =\frac{1}{2}\left( -\boldsymbol{X}^T\boldsymbol{Y}-\boldsymbol{X}^T\boldsymbol{Y}+2\boldsymbol{\theta X}^T\boldsymbol{X} \right) =0
对θT求偏导,令其为零:∇J(θ)=21(−XTY−XTY+2θXTX)=0
θ
=
(
X
T
X
)
−
1
X
T
Y
\boldsymbol{\theta }=\left( \boldsymbol{X}^T\boldsymbol{X} \right) ^{-1}\boldsymbol{X}^T\boldsymbol{Y}
θ=(XTX)−1XTY
评估方法
最常用的评估项
R 2 R^2 R2 的取值越接近于1我们认为模型拟合的越好
梯度下降
y y y轴是我们要优化的损失函数, x x x轴是自变量 θ θ θ,此处以 θ θ θ为例,整个图像就像一个山谷,梯度代表 y y y值增大的方向,我们希望 θ θ θ逐渐往y减小的方法走,即与梯度相反的方向去走,最后走到山谷。所以首先,我们要找到梯度方向,即为导数方向,描述多元变量时即为偏导方向,对应着数学中的求导。这个方向也是变化最快的方向,对应导数的值。每次走多远呢?如果步子太大,直接走到对面山上,显然不行,即会出现持续震荡,无法走到最低点。步子走得太小,迭代次数就会很大,即影响了整个的计算效率,这个参数对应的就是学习率 α α α。实际过程中,学习率一般选为0.01或0.001等,视情况调整。
在越接近这个曲线最低点位置的时候,它的斜率会越小,这意味着说学习率乘以斜率的值的大小会越小,也就是行动会越来越缓慢,越来越谨慎,所以迭代了一定的轮次之后,我们会发现 θ θ θ的变化率已经非常非常小了, 那我就可以认为 θ θ θ基本在最低点的位置,然后停止,所以我们通过这样的方式可以找到这个凸函数的全局的最低点。当然,停止策略除了 θ θ θ变化,也可以是迭代次数或是损失函数的变化值小于某个范围。
梯度下降目标函数:
梯度下降,目标函数:
J
(
θ
)
=
1
2
m
∑
i
=
1
m
(
h
θ
(
x
i
)
−
y
i
)
2
(
比之前多除以
m
是表示均值
)
\text{梯度下降,目标函数:}J\left( \theta \right) =\frac{1}{2m}\sum\limits_{i=1}^m{\left( h_{\theta}\left( x^i \right) -y^i \right)}^2\left( \text{比之前多除以}m\text{是表示均值} \right)
梯度下降,目标函数:J(θ)=2m1i=1∑m(hθ(xi)−yi)2(比之前多除以m是表示均值)
θ
j
=
θ
j
−
α
d
d
θ
J
(
θ
)
=
θ
j
−
1
m
(
h
θ
(
x
i
)
−
y
i
)
x
j
i
\theta _j=\theta _j-\alpha \frac{d}{d_{\theta}}J\left( \theta \right) =\theta _j-\frac{1}{m}\left( h_{\theta}\left( x^i \right) -y^i \right) x_{j}^{i}
θj=θj−αdθdJ(θ)=θj−m1(hθ(xi)−yi)xji
批量梯度下降:
∂
J
(
θ
)
∂
θ
j
=
−
1
m
∑
i
=
1
m
(
y
i
−
h
θ
(
x
i
)
)
x
j
i
\frac{\partial{J\left(\theta\right)}}{\partial{\theta_j}}=-\frac{1}{m}\sum\limits_{i=1}^m{\left(y^i-h_\theta{\left(x^i\right)}\right)}{x_j}^i
∂θj∂J(θ)=−m1i=1∑m(yi−hθ(xi))xji
θ
j
=
θ
j
+
1
m
∑
i
=
1
m
(
y
i
−
h
θ
(
x
i
)
)
x
j
i
\theta_j=\theta_j+\frac{1}{m}\sum\limits_{i=1}^m{\left(y^i-h_\theta\left(x^i\right)\right){x_j}^i}
θj=θj+m1i=1∑m(yi−hθ(xi))xji
(容易得到最优解,但是由于每次考虑所有样本,速度很慢)
随机梯度下降:
θ
j
=
θ
j
+
(
y
i
−
h
θ
(
x
i
)
)
x
j
i
\theta_j=\theta_j+\left(y^i-h_\theta\left(x^i\right)\right){x_j}^i
θj=θj+(yi−hθ(xi))xji
(每次找一个样本,迭代速度快,但不一定每次都朝着收敛的方向)
小批量梯度下降:
θ
j
:
=
θ
j
−
α
1
10
∑
i
=
1
i
+
9
(
h
θ
(
x
(
k
)
−
y
(
k
)
)
)
x
j
(
k
)
\theta_j:=\theta_j-\alpha\frac{1}{10}\sum\limits_{i=1}^{i+9}\left(h_\theta\left(x^{\left(k\right)}-y^{\left(k\right)}\right)\right){x_j}^{\left(k\right)}
θj:=θj−α101i=1∑i+9(hθ(x(k)−y(k)))xj(k)
(每次更新选择一小部分数据来算,实用!)