视觉问答简述

视觉问答(Visual Question Answering,VQA)是一项结合计算机视 觉和自然语言处理的学习任务。计算机视觉主要是对给定图像进行处 理,包括图像识别,图像分类等任务。自然语言处理主要是对自然语言, 文本形式的内容进行处理以及理解,包括机器翻译,信息检索,生成文 本摘要等任务。视觉问答是需要对给定图像和问题进行处理,经过一定 的视觉问答技术处理过后生成自然语言答案,是对二者的结合。

目前VQA比较先进方法包括(1)基于融合的方法:MUTAN和BLOCK;(2)基于注意力的方法:DFAF和MLIN;(3)视觉推理方法:Counting、Dual-MFA和Graph;(4)其他VQA方法:MuRel 等。

VQA提出了一系列丰富的挑战,其中许多挑战被视为自动图像理解和通用人工智能的皇冠。同时,它包括了CV、NLP和KR社区在过去几十年中取得了重大进展的几个组成部分。VQA在推动SOTA和让社区开始在任务上取得进展提供了一个有吸引力的平衡。

人工智能(Artificial Intelligence, AI)是一门综合性的学科,主要研究如何使计算机系统具有人类智能的某些特征,以解决复杂问题、学习、适应和创新。它的核心研究内容包括: 1. **机器学习**(Machine Learning):让计算机通过数据自动学习规律和模式,如监督学习、无监督学习、强化学习等。 2. **深度学习**(Deep Learning):基于神经网络的多层次模型,用于处理大规模复杂数据,如图像识别、自然语言处理等。 3. **自然语言处理**(Natural Language Processing, NLP):研究如何让机器理解和生成人类语言,包括语音识别、文本理解、机器翻译等。 4. **计算机视觉**(Computer Vision):通过算法解析和理解图像或视频,进行目标检测、图像分类、人脸识别等。 5. **知识图谱**(Knowledge Graphs):构建结构化的知识表示,用于信息检索、问答系统等场景。 6. **智能决策与规划**(Intelligent Decision Making):让机器在不确定环境中做出最优决策。 7. **机器人技术**(Robotics):研究如何让机器拥有感知、移动、交互等能力,应用于工业自动化、服务机器人等。 8. **强化学习**(Reinforcement Learning):通过试错学习,优化机器在环境中的行为策略。 9. **伦理与社会影响**(Ethics and Social Impacts):探讨AI发展的道德边界和对社会经济文化可能产生的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值