Tensorflow查看某一层的权重

本文详细介绍了如何在TensorFlow中通过`tf.trainable_variables()`查看权重名称,以及如何通过名字获取和查看dense层权重值。重点讲解了命名规则和实际操作步骤,对于理解和使用TF权重管理大有裨益。

一、查看权重name.

1.1 通过tf.trainable_variables()

for v in tf.trainable_variables():
	print(v)

这个的运行无需sess.

1.2 根据命名

举例: dense层.

with tf.variable_scope("generation"):
	o = tf.layers.dense(i, units=10)

那么该dense的权重名即为generation/dense/kernel:0,偏置即为generation/dense/bias:0

如果有多个dense, 则为generation/dense_1/kernel:0

二、获取权重值

value = tf.get_default_graph().get_tensor_by_name('common_mode/dense/kernel:0')

这样即可查看权重值.

### 使用TensorFlow计算与三好学生评选或评价体系相关的权重 对于涉及多因素综合评判的问题,如三好学生的评选,通常涉及到多个评估指标。这些指标可能包括学业成绩、社会活动参与度、品德表现等多个方面。为了利用TensorFlow来构建一个能够自动学习并调整各评估标准之间相对重要性的模型,可以采用一个多层感知机(MLP)架构来进行建模。 考虑到该问题是关于对学生进行全面素质评定的任务,这属于典型的监督学习范畴内的回归或多分类问题之一,具体取决于最终输出的形式——如果目标是预测具体的分数,则视为回归;若是划分成不同等级则为多类别分类[^1]。 #### 构建模型 首先定义输入特征向量`X`,它包含了所有用于衡量学生成绩的因素,比如考试成绩、课外活动评分等。接着设定标签`Y`表示期望的结果,即是否被评为三好学生或是其对应的具体得分。之后创建一个多层神经网络,在这里选用两层隐藏层作为例子: ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout model = Sequential([ Dense(64, activation='relu', input_shape=(input_dim,)), # 输入维度需根据实际数据集确定 Dropout(0.5), Dense(32, activation='relu'), Dropout(0.5), Dense(output_units, activation='softmax') # 输出单元数量依据任务性质决定 ]) ``` 此处假设最后一层采用了Softmax激活函数,适用于当输出为离散型变量的情况,例如将学生划分为几个不同的荣誉级别。如果是连续数类型的输出,则应选择其他合适的激活方式,像线性激活函数。 #### 编译与训练模型 编译阶段指定了损失函数以及优化算法的选择,这对于指导模型参数更新至关重要。针对三好学生这样的分类问题,交叉熵常被用来测量预测分布和真实分布之间的差异程度。而对于回归类问题,则更倾向于均方误差(MSE)这类度量准则。 ```python model.compile(optimizer='adam', loss='categorical_crossentropy' if classification else 'mse', metrics=['accuracy'] if classification else ['mae']) history = model.fit(X_train, Y_train, epochs=epochs_num, batch_size=batch_sz, validation_split=val_ratio) ``` 通过上述过程中的反向传播机制,TensorFlow会自动调整每一层内部连接上的权大小,从而使得整个系统的性能达到最优状态。在这个过程中形成的那些最终权重就反映了各个影响因子在整个决策流程里所占的重要性比例。 #### 提取权重 一旦完成了模型的训练,就可以访问每层内含有的可训练参数,进而获取到想要了解的重要系数。对于Dense层而言,可以通过`.get_weights()`方法获得当前层所有的权重矩阵W及其偏置项b。 ```python for layer in model.layers: weights, biases = layer.get_weights() print(f"Weights shape {weights.shape}, Bias shape {biases.shape}") ``` 以上就是基于TensorFlow框架下实现对类似于三好学生这样复杂对象进行量化评估的方法概述,并展示了怎样从中提取出具有解释意义的关键权重信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值