在使用pyspark提交任务到集群时,经常会遇到服务器中python库不全或者版本不对的问题。此时可以使用参数–archives,从而使用自己的python包来解决。
实验步骤如下:
测试代码使用jieba做分词,但服务器上面没有此库:
import jieba
jieba.initialize()
from pyspark.context import SparkContext
from pyspark.conf import SparkConf
sc = SparkContext(conf=SparkConf().setAppName("mnist_parallelize"))
s = sc.parallelize([1,2,3,4,5])
s.saveAsTextFile('hhc')
将anaconda打包:
zip -r anaconda2.zip anaconda2/
上传到hdfs:(如果是可视化的系统,是可以直接进行拖拽操作,其次,如果anaconda安装在hdfs内,可以不需要archives参数,直接给出PYSPARK_PYTHON的路径--anaconda的python路径即可,不需要压缩anaconda)
hadoop fs -put anaconda2.zip /user/xxx/tools
python上传后,在进行spark-submit时,会自动分发anaconda2的包到各个工作节点。但还需要给工作节点指定python解压路径:
spark-submit \
--master yarn \
--deploy-mode cluster \
--num-executors 1 \
--executor-memory 1G \
--archives hdfs:///user/xxx/tools/anaconda2.zip#anaconda2 \
--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./anaconda2/anaconda2/bin/python2 \
test.py
注:此时应特别注意解压路径,在anaconda2.zip在本地解压后,python的可执行路径为anaconda2/bin/python2,但在服务器上面会多一层。
---------------------
参考文章:https://blog.csdn.net/crookie/article/details/78351095 (90%内容来源于此)
本人添加了10%的内容