零膨胀负二项回归模型的使用 R语言

简介

近期,需要使用零膨胀负二项回归模型。因此,找到R语言中的一个包:pscl。

首先,使用Rstudio下载此包。

install.packages("pscl")

该软件发表于下面的期刊。

Zeileis A, Kleiber C, Jackman S. Regression models for count data in R[J]. Journal of statistical software, 2008, 27(8): 1-25.

详细使用可以参考:https://cran.r-project.org/web/packages/pscl/vignettes/countreg.pdf

案例

下面讲解一个自带的案例。

library(pscl)
data("bioChemists", package = "pscl") 

fm_zinb <- zeroinfl(art ~ . | ., data = bioChemists, dist = "negbin") 

在官方文档中提供了以下的一些方法用于查看模型的系数估计结果,预测,检验,AIC和BIC等。

首先,我们summary一下:

summary(fm_zinb)

可以看到如下结果:
在这里插入图片描述

其次,我想看看AIC和BIC的结果。

AIC(fm_zinb)
BIC(fm_zinb)

运行结果为:
在这里插入图片描述

### 实现零膨胀回归模型 在统计分析中,当数据集中存在过多的零值时,传统的泊松回归或其他计数数据分析方法可能不再适用。此时可以采用零膨胀回归模型来处理这类情况。 #### 零膨胀泊松回归 (Zero-Inflated Poisson Regression) 为了在R语言环境中构建零膨胀泊松回归模型,`pscl`包提供了方便易用的功能函数`zeroinfl()`[^1]: ```r library(pscl) model <- zeroinfl(formula = y ~ . | 1, data = dataset) summary(model) ``` 上述代码片段展示了如何创建一个基本的零膨胀泊松回归模型。其中`y`代表响应变量名;`.`表示使用除截距项外的数据集中的所有其他列作为预测因子;而`| 1`则意味着仅考虑全局常量影响下的额外零概率部分。 #### 零膨胀负二项式回归 (Zero-Inflated Negative Binomial Regression) 如果遇到过离散现象,则应选用更灵活的分布形式——即零膨胀负二项式回归。同样地,在R环境下可通过调用`pscl`库内的相同名称函数完成建模工作: ```r model_nb <- zeroinfl(formula = y ~ . | 1, data = dataset, dist="negbin") summary(model_nb) ``` 这里通过设置参数`dist='negbin'`指定了所使用的具体分布类型为负二项式分布。 #### 模型评估与诊断 对于任何类型的回归模型而言,对其性能进行全面评价都是至关重要的环节之一。针对零膨胀模型来说,除了常规残差图之外,还可以利用AIC/BIC准则比较不同候选模型的好坏程度,并借助VIF检验共线性问题等手段进一步优化最终选定的结果。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值