[置顶] 三层Dirichlet 过程(非参贝叶斯模型)-来自Machine Learning

标签: DP 非参贝叶斯模型 机器学习 推理
75人阅读 评论(0) 收藏 举报
分类:

本文作者:合肥工业大学 管理学院 钱洋 email:1563178220@qq.com 内容可能有不到之处,欢迎交流。

未经本人允许禁止转载

文章来源

Nguyen V A, Boyd-Graber J, Resnik P, et al. Modeling topic control to detect influence in conversations using nonparametric topic models[J]. Machine Learning, 2014, 95(3): 381-421.
来自于机器学习顶级期刊《Machine Learning》上。这篇文章首先发表在12的Machine Learning会议上,后改投至其对应的期刊。

文章简介

首先,这篇文章是三层的DP模型,即非参层次贝叶斯模型,所要解决的问题是:(1)发掘一系列对话中的主题;(2)这些主题在各对话中是怎么共享的;(3)在对话的什么阶段,讨论的主题会发生改变(这里使用的二元变量控制);(4)话题的控制。作者评估的数据集包括会议记录,在线讨论以及政治辩论数据集。
在多方对话行为中,人与人是相互影响的,那么现有的研究就包括如何学习和识别多方对话中的具有影响力的人。在早期的研究中,主要采访的方法是结构模式学习(structural patterns),例如基于说话的时间以及参与的积极性来判断参与者是否有影响力。如果参与者谈论的很多,那么该参与者则更具影响力,更具领导能力们更加具有控制性(这里作者列举了一些列研究)。现有的研究中,主要使用的是计算学方法,也是确定结构性特征来划分该参与者是否有影响力。
但是呢,话题的参与者说话声音大、时间长却并不一定能表示他更具影响力。在结构模式学习中,语言的特征在建立影响力以及控制话题方面也扮演者重要的角色。例如,有学者研究表明,语言表达的多样性、词汇的丰富性与在线社区中的领导者有强相关关系。
在这篇文章中,作者提出了一种新的计算模型来获取参与者对对话的影响。模型名称为Speaker Identity for Topic Segmentation 即SITS。

论文笔记


这里写图片描述


这里写图片描述


这里写图片描述


这里写图片描述


这里写图片描述


这里写图片描述





这里写图片描述


这里写图片描述


这里写图片描述


这里写图片描述


这里写图片描述


这里写图片描述


这里写图片描述


这里写图片描述


这里写图片描述


这里写图片描述

简单思考

针对这种具有三层结构的文本数据的主题学习,可以参考这篇文章的思路。管理中的用户偏好学习。

论文代码

作者提供的源码地址为:https://github.com/vietansegan/sits

查看评论

狄利克莱过程模型(一):非参数贝叶斯无限混合模型和Dirichlet过程

[作者按] 这篇文章是根据edwin Chen的博客 http://blog.echen.me/2012/03/20/infinite-mixture-models-with-nonparametri...
  • duskwaitor
  • duskwaitor
  • 2014-12-02 13:23:21
  • 2767

Dirichlet Process-非参数贝叶斯(1)

1. jardon的文章 1.在de finetti的数学书中,他证明了,当一个可数无限维随机变量集合{x1,x2,...}满足infinitely exchangeable性质,即,对集合中取出任意N...
  • windows2
  • windows2
  • 2014-01-07 17:46:49
  • 1493

【非参数贝叶斯学习系列】Dirichlet distribution学习笔记

Dirichlet distribution是一个很重要 的分布,其是Dirichlet process 存在的基础,DP本身是得出非参贝叶斯估计中的求得先验分布的重要方法。这个分布本身其实是Beta...
  • u011089523
  • u011089523
  • 2016-06-25 16:49:03
  • 686

dirichlet process

本文对中国餐馆过程,狄利克雷过程的来龙去脉进行简单介绍。
  • baihaoli123
  • baihaoli123
  • 2016-10-24 22:45:54
  • 569

非参贝叶斯

之前研究过一段时间的非参贝叶斯,但是对为什么叫“非参”,以及dirichlet process不是很了解,今天看到一篇神文,深入浅出的娓娓道来 为什么叫“非参”:传统的聚类在开始的时候就要设定类别的...
  • sunmenggmail
  • sunmenggmail
  • 2012-04-05 19:52:23
  • 5537

非参数贝叶斯模型概述

看这个模型很久了,可能一直深入的不够,现把自己的一点愚见不断的贴上来,走过路过的,欢迎意见或建议,不甚感激。    贝叶斯非参数模型是一种定义在无限维参数空间上的贝叶斯模型。顾名思义,也就是非参数模型...
  • workerwu
  • workerwu
  • 2012-10-31 10:55:19
  • 12105

hlda周边—非参数贝叶斯模型

参考http://blog.csdn.net/workerwu/article/details/8131009  http://paley.mydiscussion.net/?p=331 贝叶斯非参数...
  • li1san2shu3xue
  • li1san2shu3xue
  • 2014-03-17 21:34:24
  • 984

DPMM和HDP 非参数贝叶斯(2)

图1: DPMM(Dirchlet process mixture model)  以上为DP对应的图模型,基本分布为G0,这里假设是一个高斯模型(可以是连续或者离散), G~DP(/alpha0...
  • windows2
  • windows2
  • 2014-01-20 23:57:58
  • 1012

python机器学习模型选择&调参工具Hyperopt-sklearn(1)——综述&分类问题

针对特定的数据集选择合适的机器学习算法是冗长的过程,即使是针对特定的机器学习算法,亦需要花费大量时间和精力调整参数,才能让模型获得好的效果,Hyperopt-sklearn可以辅助解决这样的问题。...
  • qinhanmin2010
  • qinhanmin2010
  • 2017-03-23 15:46:38
  • 2969

Scikit learn:machine learning in Python之贝叶斯学习

chapter 2之朴素贝叶斯.        朴素贝叶斯是一个简单却很强大的分类器,基于贝叶斯定理的概率模型。本质来说,贝叶斯是基于每个特征值的概率去决定该实例属于一类的概率,前提条件,也就是假定每...
  • xiu_star
  • xiu_star
  • 2016-12-18 19:16:36
  • 1070
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 56万+
    积分: 6091
    排名: 5155
    联系方式

    欢迎评论交流,正常情况每天都会查看博客!

      邮箱:1563178220@qq.com;qy20115549@126.com
      发送邮件或申请加qq好友的,请注明咨询或者源码获取,白天较少回复请留言,将相关问题说明。

      由于本人知识有限,博客难免会有错误或疏漏之处,发现会及时修正。另外本人博客仅供学习使用,未经本人允许,禁止转载,或者上传到百度文库、道客巴巴等平台。

    Flag Counter Flag Counter
    博客专栏
    最新评论