变分推断中的ELBO(证据下界)

本文作者:合肥工业大学 电子商务研究所 钱洋 email:1563178220@qq.com 。
内容可能有不到之处,欢迎交流

未经本人允许禁止转载

变分推断简介

变分推理的目标是近似潜在变量(latent variables)在观测变量(observed variables)下的条件概率。解决该问题,需要使用优化方法。在变分推断中,需要使用到的一个重要理论,是平均场理论,读者可以参考我的另外一篇博客:
https://qianyang-hfut.blog.csdn.net/article/details/86644192

变分推断等价于最小化KL散度。
在这里插入图片描述
其中, q ( z ) q(z) q(z)为近似分布, p ( z ∣ x ) p(z|x) p(zx)所要求的的后验概率分布。这里之所以对 p ( z ∣ x ) p(z|x) p(zx)进行近似,是因为其很难计算,在下一小节将对其进行讨论

KL散度可以表示为:
在这里插入图片描述
其中, Q ( x ) Q(x) Q(x)为要近似的分布, P ( x ∣ D ) P(x|D) P(xD)为参数 x x x的条件概率分布。

这个公式可以继续化简,读者可以参考我的另外一篇博客:
https://qianyang-hfut.blog.csdn.net/article/details/86644192
或者参考:A Tutorial on Variational Bayesian Inference

化简后的结果为:
在这里插入图片描述
其中, l n P ( D ) lnP(D) lnP(D)为log似然, L L L为log似然的下界。使得KL散度最小,相当于最大化 L L L。如下为三者之间的关系:
在这里插入图片描述

ELBO

ELBO,全称为 Evidence Lower Bound,即证据下界。这里的证据指数据或可观测变量的概率密度。

假设 x = x 1 : n x=x_{1:n} x=x1:n表示一系列可观测数据集, z = z 1 : m z=z_{1:m} z=z1:m为一系列隐变量(latent variables)。则可用 p ( z , x ) p(z,x) p(z,x)表示联合概率 p ( z ∣ x ) p(z|x) p(zx)条件概率 p ( x ) p(x) p(x)证据

那么,贝叶斯推理需要求解的就是条件概率,即:
在这里插入图片描述
然而,对很多模型而言,计算 p ( x ) p(x) p(x)是很困难的,即:
在这里插入图片描述
因此,无法直接计算 p ( z ∣ x ) p(z|x) p(zx)。那么,这里变分推断就来了。在上一节中已提及,变分推断的目标是找到一个概率密度函数 q ( z ) q(z) q(z)来近似 p ( z ∣ x ) p(z|x) p(zx)*,要得到最佳的 q ( z ) q(z) q(z)必须优化:
在这里插入图片描述
其中,KL散度可以表示为:
在这里插入图片描述
由于KL散度大于0,进而我们可以求得:
l o g p ( x ) ≥ E [ l o g p ( z ∣ x ) ] − E [ l o g q ( z ) ] logp(x)\geq E\left [ logp(z|x) \right ] - E\left [ logq(z) \right ] logp(x)E[logp(zx)]E[logq(z)]
这里终于知道为什么叫证据下界了吧,即公式的左边的证据的对数形式,右边为其下界。因此,我们有:
在这里插入图片描述
在使用变分推断时,首先需要计算的便是ELBO。从上面的公式可以看到,要计算ELBO,需要写出联合概率密度 p ( z , x ) p(z,x) p(z,x) q ( z ) q(z) q(z)

在写出这两个式子之后,带入ELBO公式,分别求对数。之后,分别求期望。在期望计算完之后,针对具体的变分参数,求偏导,并令偏导为0,即可得到变分参数的更新公式。

在实际公式推导过程中,关键点就在于如何求期望。其计算期望往往需要用到指数分布族的性质,即可以将期望计算转化成求导计算。关于指数分布族的介绍读者可以参考我的另外一篇博客:
https://qianyang-hfut.blog.csdn.net/article/details/87247363

案例

高斯混合模型

第一个案例为,高斯混合模型。详细的介绍可参考我的另外一篇博客,该博客也提供了Python代码:
https://qianyang-hfut.blog.csdn.net/article/details/86694325
其模型的生成过程为:
在这里插入图片描述

LDA

在LDA模型中,需要计算下界:
在这里插入图片描述
其中,
在这里插入图片描述
关于联合概率分布可以表示为:
在这里插入图片描述
基于平均场原理:
在这里插入图片描述
写出这两个式子之后,可以求其期望。这个中间步骤还是很繁琐的。最后,可以得到变分参数的更新公式:
在这里插入图片描述

参考文献

[1] Blei D M, Kucukelbir A, McAuliffe J D. Variational inference: A review for statisticians[J]. Journal of the American Statistical Association, 2017, 112(518): 859-877.
[2]Kurihara K, Welling M, Teh Y W. Collapsed Variational Dirichlet Process Mixture Models[C]//IJCAI. 2007, 7: 2796-2801.

  • 83
    点赞
  • 299
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
### 回答1: 变分推断(variational inference)是一种用于在概率模型近似推断潜在变量的方法。在概率模型,我们通常有观测数据和潜在变量两个部分。我们希望通过观测数据集来估计潜在变量的后验分布。然而,由于计算复杂度的限制,我们无法直接计算后验分布。 变分推断通过近似后验分布为一个简化的分布来解决这个问题。它会选择一个与真实后验分布相似的分布族,然后通过最小化这个分布与真实后验分布之间的差异来得到一个最佳的近似分布。这个问题可以转化为一个最优化问题,通常使用变分推断的一个常用方法是最大化证据下界(evidence lower bound,ELBO)来近似后验分布。 变分推断的一个重要特点是可以处理大规模和复杂的概率模型。由于近似分布是通过简化的分布族来表示的,而不是直接计算后验分布,所以它可以减少计算复杂度。此外,变分推断还可以通过引入额外的约束或假设来进一步简化近似分布,提高计算效率。 然而,变分推断也有一些缺点。因为近似分布是通过简化的分布族来表示的,所以它会引入一定的偏差。此外,变分推断的结果依赖于所选择的分布族,如果分布族选择不合适,可能会导致较差的近似结果。 总之,变分推断是一种用于近似计算概率模型后验分布的方法,通过选择一个与真实后验分布相似的分布族,并最小化与真实后验分布之间的差异来得到一个最佳的近似分布。它具有处理大规模和复杂模型的能力,但也有一些局限性。 ### 回答2: 转变分推断(variational inference)是一种用于近似求解复杂概率模型的方法。它的核心思想是将复杂的后验分布近似为一个简单的分布,通过最小化这两个分布之间的差异来求解模型的参数。 变分推断通过引入一个简单分布(称为变分分布)来近似复杂的后验分布。这个简单分布通常属于某个已知分布族,例如高斯分布或指数分布。变分推断通过最小化变分分布和真实后验分布之间的差异,来找到最优的参数。 为了实现这一点,变分推断使用了KL散度(Kullback-Leibler divergence)这一概念。KL散度是用来衡量两个概率分布之间的差异的指标。通过最小化变分分布与真实后验分布之间的KL散度,我们可以找到一个最优的变分分布来近似真实后验分布。 变分推断的步骤通常包括以下几个步骤: 1. 定义变分分布:选择一个简单的分布族作为变分分布,例如高斯分布。 2. 定义目标函数:根据KL散度的定义,定义一个目标函数,通常包括模型的似然函数和变分分布的熵。 3. 最优化:使用数值方法(例如梯度下降法)最小化目标函数,找到最优的变分参数。 4. 近似求解:通过最优的变分参数,得到近似的后验分布,并用于模型的推断或预测。 变分推断的优点是可以通过选择合适的变分分布,来控制近似精度和计算复杂度之间的平衡。它可以应用于各种概率模型和机器学习任务,例如潜在变量模型、深度学习和无监督学习等。 总而言之,转变分推断是一种用于近似求解复杂概率模型的方法,通过近似后验分布来求解模型的参数。它通过最小化变分分布与真实后验分布之间的差异来实现近似求解。这个方法可以应用于各种概率模型和机器学习任务,具有广泛的应用价值。 ### 回答3: 变分推断(Variational Inference)是一种用于概率模型的近似推断方法。它的目标是通过近似的方式来近似估计概率分布的某些未知参数或隐变量。 在概率模型,我们通常希望得到后验概率分布,即给定观测数据的情况下,未知参数或隐变量的概率分布。然而,由于计算复杂性的原因,我们往往无法直接计算后验分布。 变分推断通过引入一个称为变分分布的简化分布,将原问题转化为一个优化问题。具体来说,我们假设变分分布属于某个分布族,并通过优化一个目标函数,使得变分分布尽可能接近真实的后验分布。 目标函数通常使用卡尔贝克-勒勒散度(Kullback-Leibler divergence)来度量变分分布与真实后验分布之间的差异。通过最小化这个目标函数,我们可以找到最优的近似分布。在这个优化问题,我们通常将问题转化为一个变分推断问题,其我们需要优化关于变分分布的参数。 变分推断的一个优点是可以应用于各种类型的概率模型,无论是具有连续随机变量还是离散变量。此外,变分推断还可以解决复杂的后验推断问题,如变分贝叶斯方法和逐步变分推断等。 然而,变分推断也存在一些限制。例如,它通常要求选择一个合适的变分分布族,并且该族必须在计算上可以处理。此外,变分推断还可能导致近似误差,因为我们将问题简化为一个优化问题,可能会导致对真实后验分布的一些信息丢失。 总而言之,变分推断是一种强大的近似推断方法,可以用于概率模型的参数和隐变量的估计。它通过引入变分分布来近似计算复杂的后验概率分布,从而转化为一个优化问题。然而,需要注意选择合适的变分分布族和可能的近似误差。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值