Linux系统本地化部署Dify并安装Ollama运行llava大语言模型详细教程

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。
img

非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。💝💝💝 ✨✨ 欢迎订阅本专栏 ✨✨

前言

本篇文章介绍如何将 Dify 本地私有化部署,并且接入 Ollama 部署本地模型,实现在本地环境中部署和管理 LLM,再结合 cpolar 内网穿透实现公网远程访问 Dify。

Dify 它是一个开源 LLM 应用开发平台。拥有直观的界面结合了 AI 工作流、RAG 管道、代理功能、模型管理、可观察性功能等,可以快速从原型开发到生产。

Ollama 是一个本地推理框架,允许开发人员轻松地在本地部署和运行 LLM,例如 Llama 3、Mistral 和 Gemma。Dify 是一个 AI 应用开发平台,提供了一套完整的工具和 API,用于构建、管理和部署 AI 应用。

接下来在本地部署 DIfy。
在这里插入图片描述

1. 本地部署 Dify 应用开发平台

本篇文章安装环境:Linux Ubuntu22.04

使用 Docker Compose 部署:Docker 19.03 或更高版本、Docker Compose 1.25.1 或更高版本

安装 Dify 之前,请确保你的机器已满足最低安装要求:CPU>2 Core RAM>=4GB

克隆 Dify 源代码至本地环境:

git clone https://github.com/langgenius/dify.git

b08321f6a77d4bfaf93954b583972f8.png

启动 Dify:

进入 Dify 源代码的 Docker 目录

cd dify/docker

复制环境配置文件

cp .env.example .env

启动 Docker 容器

sudo docker compose up -d

运行命令后,你应该会看到类似以下的输出,显示所有容器的状态和端口映射:

b5c21e5aebb987f1055b46990f9e04a.png

最后检查是否所有容器都正常运行:

docker compose ps

然后打开一个新的浏览器,输入 localhost:80,或者本机 IP 地址:80,可以看到进入到了 Dify 中。

716e588c46dc002fbcaf4f556bba84b.png

设置管理员账号:填写邮箱、用户名、密码后,再重新登录一下

bf99bb247c6823c75016d2b9e135bd1.png

可以看到进入到了 Dify 的主界面当中

cf6340a8c09a6eb0607ce84b939d017.png

接下来配置 ollama 模型

2. 使用 Ollama 部署本地模型

打开一个新的终端,输入下方命令安装 ollama

curl -fsSL https://ollama.com/install.sh | sh

3af490763677db757ec7b147a947ced.png

运行 Ollama 并与 Llava 聊天

ollama run llava

17d5eae6a0e47134be90813662d9da6.png

启动成功后,ollama 在本地 11434 端口启动了一个 API 服务,可通过 http://localhost:11434 访问。

image.png

接下来回到 Dify 中,接入 Ollama 模型。

3. 在 Dify 中接入 Ollama 大语言模型

在 Dify 主界面,点击右上角个人名字圆圈,点击设置——模型供应商——Ollama

7cfcff463b949cc043836214a500cd1.png

点击填入:

c165ddbc25709eb89ff478031b562ad.png

  • 模型名称:llava

  • 基础 URL:http://<本机IP地址>:11434

    此处需填写可访问到的 Ollama 服务地址。

    若 Dify 为 docker 部署,建议填写局域网 IP 地址,如:http://192.168.1.100:11434 或 docker 宿主机 IP 地址,如:http://172.17.0.1:11434

    若为本地源码部署,可填写 http://localhost:11434

  • 模型类型:对话

  • 模型上下文长度:4096

    模型的最大上下文长度,若不清楚可填写默认值 4096。

  • 最大 token 上限:4096

    模型返回内容的最大 token 数量,若模型无特别说明,则可与模型上下文长度保持一致。

  • 是否支持 Vision:

    当模型支持图片理解(多模态)勾选此项,如 llava

点击 “保存” 校验无误后即可在应用中使用该模型。

如果 Ollama 作为 systemd 服务运行,应该使用systemctl设置环境变量:

  1. 通过调用sudo vim /etc/systemd/system/ollama.service 编辑 systemd 服务。这将打开一个编辑器。

  2. 对于每个环境变量,在[Service]部分下添加一行Environment

[Service]
Environment="OLLAMA_HOST=0.0.0.0"

image.png

保存并退出

重载systemd并重启 Ollama:

systemctl daemon-reload

systemctl restart ollama

然后再回到主页面当中,点击创建空白应用

image.png

选择聊天助手,起一个名字,点击创建

image.png

右上角选择 llava 模型

image.png

在文本框中编辑文字即可进行对话

image.png

目前我们在本机部署了 Dify,并且还添加了 Ollama 大模型,如果想团队协作多人使用,或者在异地其他设备使用的话就需要结合 Cpolar 内网穿透实现公网访问,免去了复杂得本地部署过程,只需要一个公网地址直接就可以进入到 Dify 中。

接下来教大家如何安装 Cpolar 并且将 Dify 实现公网访问。

4. 公网远程使用 Dify

下面我们在 Linux 安装 Cpolar 内网穿透工具,通过 Cpolar 转发本地端口映射的 http 公网地址,我们可以很容易实现远程访问,而无需自己注册域名购买云服务器.下面是安装 cpolar 步骤

cpolar 官网地址: https://www.cpolar.com

使用一键脚本安装命令

curl https://get.cpolar.sh | sudo sh

image-20240801132238671

安装完成后,执行下方命令查看 cpolar 服务状态:(如图所示即为正常启动)

sudo systemctl status cpolar

image.png

Cpolar 安装和成功启动服务后,在浏览器上输入 ubuntu 主机 IP 加 9200 端口即:【http://localhost:9200】访问 Cpolar 管理界面,使用 Cpolar 官网注册的账号登录,登录后即可看到 cpolar web 配置界面,接下来在 web 界面配置即可:

image-20240801133735424

4.1 创建远程连接公网地址

登录 cpolar web UI 管理界面后,点击左侧仪表盘的隧道管理——创建隧道:

  • 隧道名称:可自定义,本例使用了: dify 注意不要与已有的隧道名称重复
  • 协议:http
  • 本地地址:80
  • 域名类型:随机域名
  • 地区:选择 China Top

e236629c30c2161232c1655493d22ad.png

创建成功后,打开左侧在线隧道列表,可以看到刚刚通过创建隧道生成了两个公网地址,接下来就可以在其他电脑(异地)上,使用任意一个地址在浏览器中访问即可。

abe8c7201aca664a20a8ac320236595.png

如下图所示,成功实现使用公网地址异地远程访问本地部署的 Dify 应用开发平台!

bb5906f2d50520ec228aa78b1b8b859.png

登录可以看到同样进入到了主界面中,继续使用自己创建的应用了

383e7bb875af096a04e14da924aeec3.png

小结

为了方便演示,我们在上边的操作过程中使用了 cpolar 生成的 HTTP 公网地址隧道,其公网地址是随机生成的。

这种随机地址的优势在于建立速度快,可以立即使用。然而,它的缺点是网址是随机生成,这个地址在 24 小时内会发生随机变化,更适合于临时使用。

如果有长期远程访问本地 Dify 开发应用平台或者其他本地部署的服务的需求,但又不想每天重新配置公网地址,还想地址好看又好记,那我推荐大家选择使用固定的二级子域名方式来远程访问。

5. 固定 Dify 公网地址

由于以上使用 cpolar 所创建的隧道使用的是随机公网地址,24 小时内会随机变化,不利于长期远程访问。因此我们可以为其配置二级子域名,该地址为固定地址,不会随机变化.

注意需要将 cpolar 套餐升级至基础套餐或以上,且每个套餐对应的带宽不一样。【cpolar.cn 已备案】

登录 cpolar 官网,点击左侧的预留,选择保留二级子域名,地区选择 china vip top,然后设置一个二级子域名名称,填写备注信息,点击保留。

fe72be4b9c350c2fb34cdfb88e49320.png
保留成功后复制保留的二级子域名地址:

b732329ece62fdbbd63c7a18fb2f524.png

登录 cpolar web UI 管理界面,点击左侧仪表盘的隧道管理——隧道列表,找到所要配置的隧道,点击右侧的编辑

修改隧道信息,将保留成功的二级子域名配置到隧道中

  • 域名类型:选择二级子域名
  • Sub Domain:填写保留成功的二级子域名
  • 地区: China VIP

点击更新

463706456a7806bb596036ec151044a.png

更新完成后,打开在线隧道列表,此时可以看到随机的公网地址已经发生变化,地址名称也变成了保留和固定的二级子域名名称。

82274f0c737fed53d9b60a375935c82.png

最后,我们使用固定的公网地址访问 Dify 界面可以看到访问成功,一个永久不会变化的远程访问方式即设置好了。

5315f47a37dae1b8a7663b1d1d64ba6.png

e7ff73577b4f9266a4fba38ded512d3.png

接下来就可以随时随地进行异地公网来使用 Dify 开发应用平台了,把固定的公网地址分享给身边的人,方便团队协作,同时也大大提高了工作效率!自己用的话,无需云服务器,还可以实现异地其他设备登录!以上就是如何在本地安装 Dify 并搭建 Ollama 的全部过程。

觉得有用的话点个赞 👍🏻 呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!😄😄😄

💘💘💘如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!👍 👍 👍

🔥🔥🔥Stay Hungry Stay Foolish 道阻且长,行则将至,让我们一起加油吧!🌙🌙🌙

img

<think>好的,我现在需要帮助用户解决在Docker中部署DifyOllama后,Dify WebUI模型供应商无法选择和设置的问题。首先,我要根据用户提供的三个引用内容来分析可能的原因和解决方案。 首先,用户提到参考了引用[1],其中涉及设置OLLAMA_HOST和OLLAMA_MODELS的环境变量,但用户可能在Windows环境下遇到问题,因为官网没有给出具体的实例步骤。这说明Ollama的配置可能不正确,导致Dify无法连接到Ollama服务,从而无法在WebUI中显示模型供应商选项。 接下来,引用[2]讨论了Dify的离线部署,提到了修改Docker Compose文件以及Redis容器的问题。这可能意味着用户在部署过程中可能没有正确配置DifyOllama之间的连接,或者Docker网络设置有问题,导致服务间无法通信。此外,Redis容器频繁重启可能影响Dify的正常运行,需要检查Redis的配置和日志。 引用[3]提到在模型设置中选择deepseek-1.5b配置系统提示词。这可能说明用户需要在Dify的后台正确绑定Ollama提供的模型,但可能由于模型未正确加载或配置,导致供应商选项不可用。 综合这些信息,可能的原因包括: 1. Ollama服务未正确启动或配置,环境变量设置不当。 2. DifyOllama之间的网络通信问题,可能Docker网络配置错误。 3. Dify的模型配置未正确绑定Ollama提供的模型。 4. Redis或其他依赖服务运行异常,影响Dify功能。 接下来,我需要逐一排查这些可能的原因。首先检查Ollama的环境变量是否正确设置,确保Ollama在Docker容器中正常运行且端口11434可访问。然后验证Dify的Docker Compose配置,确保连接到正确的Ollama服务地址。检查Dify的后台设置,确认模型已正确添加绑定到Ollama。最后,查看相关容器的日志,尤其是Dify-api和Ollama的日志,寻找错误信息。 可能还需要用户提供更多细节,例如Docker Compose文件内容、环境变量设置和日志片段,以更准确地定位问题。但根据现有信息,可以给出初步的解决方案步骤,帮助用户逐步排查和解决问题。</think>### 分步解决方案 针对Docker部署DifyOllama后WebUI模型供应商无法选择的问题,按以下步骤排查: --- #### **1. 验证Ollama服务状态** - **检查Ollama容器运行状态** 确保Ollama容器已启动且端口`11434`暴露: ```bash docker ps | grep ollama # 应显示类似:0.0.0.0:11434->11434/tcp ``` 若未运行,需在Docker Compose中添加Ollama配置: ```yaml services: ollama: image: ollama/ollama ports: - "11434:11434" ``` - **设置Ollama环境变量** 在Dify的环境变量中明确指定Ollama地址[^1]: ```yaml # Dify的docker-compose.yml环境变量部分添加: environment: - OLLAMA_HOST=http://ollama:11434 # 若容器在同一网络,使用服务名;否则用宿主机IP ``` --- #### **2. 配置DifyOllama的网络连接** - **确保容器在同一Docker网络** 检查DifyOllama是否共用自定义网络: ```bash docker network inspect <network_name> ``` 若未共享,需在`docker-compose.yml`中为两者指定相同网络: ```yaml networks: my_network: driver: bridge services: dify-api: networks: - my_network ollama: networks: - my_network ``` - **测试容器间通信** 进入Dify容器内部测试Ollama连通性: ```bash docker exec -it dify-api curl http://ollama:11434 # 预期返回Ollama版本信息,若失败需检查网络或DNS设置 ``` --- #### **3. 检查Dify模型绑定配置** - **在Dify后台添加Ollama模型** 登录Dify管理界面,进入**模型供应商 > 自定义模型**: 1. 填写模型名称(如`deepseek-1.5b`) 2. 接口地址填写`http://ollama:11434` 3. 模型类型选择`生成型`[^3] - **验证模型加载** 通过Ollama API确认模型已下载且可用: ```bash curl http://localhost:11434/api/tags # 应返回已下载模型列表,若缺失需执行:docker exec ollama ollama pull deepseek-1.5b ``` --- #### **4. 排查依赖服务异常** - **检查Redis容器状态** Redis崩溃可能导致Dify功能异常[^2]: ```bash docker logs dify-redis # 查看是否有内存溢出或权限错误 ``` 调整Redis配置: ```yaml # docker-compose.yml中增加资源限制 redis: image: redis:alpine command: redis-server --maxmemory 256mb --maxmemory-policy allkeys-lru ``` --- #### **5. 查看关键日志定位问题** - **Dify-api日志** ```bash docker logs dify-api | grep -i ollama # 关注连接超时、认证失败或模型未找到的报错 ``` - **Ollama日志** ```bash docker logs ollama # 检查模型加载错误或API请求拒绝记录 ``` --- ### 常见问题补充 - **若使用宿主机IP连接Ollama**: 需在防火墙开放`11434`端口(Linux示例): ```bash sudo ufw allow 11434/tcp ``` - **Windows/Mac特殊配置**: 在Docker Desktop设置中,将Ollama的`host.docker.internal`映射到宿主机IP: ```yaml environment: - OLLAMA_HOST=http://host.docker.internal:11434 ``` ---
评论 134
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kwan的解忧杂货铺@新空间

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值