图像增强库Albumentations(一)

本文介绍了Albumentations,一个强大的图像增强库,适用于深度学习的多种任务,包括分类、目标检测和分割。它允许改变label、设置概率和强度,提供清晰的增强流程,并进行了严格测试。文中探讨了为何需要图像增强,为什么选择Albumentations,以及如何在分类任务中使用它。还展示了简单的图像增强pipeline的定义,包括16位图像增强和天气模拟等实际应用。
摘要由CSDN通过智能技术生成

1.大体的认识、有用没用的bb

官网:https://albumentations.ai/

github:https://github.com/albumentations-team/albumentations

例子:https://github.com/albumentations-team/albumentations_examples

特点:分类、目标检测、分割等任务都支持增强,与pytorch等框架都兼容,是Pytorch生态的一部分。

1.1 为什么图像增强能提升深度学习的性能?

DNN需要大量数据避免过拟合,数据成本很高:1.训练数据要标注,昂贵;2.有的训练数据本身就很难收集,法律限制等。

图像增强是:根据已有数据,创造新的训练数据的方法。就是对原图进行调整,如裁剪,亮度变化等。例子:
在这里插入图片描述

1.2 为什么需要一个单独的图像增强的库?

图像增强看似简单,基本的转换有:mirroring,cropping,改变亮度、分辨率等。很多库都能实现,Pillow与cv2等,但是有很多限制.

1.可以改变label

如,在分割、目标检测与关键点检测的任务里,label需要同image一起进行相应的转化的。torchvision应该是没有现成的实现的,Pillow与cv2应该需要你自己实现,就很复杂的!

对分类任务你只要改变image即可,label是不变的。
在这里插入图片描述

但是对分割,旋转了之后,对应的mask的label也要对应改变!
在这里插入图片描述

目标检测也一样,框的位置,大小在image调整后,都要进行相应的进行调整。
在这里插入图片描述

2.可设置概率与强度(torchvision也可以)

通常数据集大,增强的概率10-30%,强度不需要太大;数据集小,概率40-50%,加大强度。

3.明确的增强进行的pipeline(torchvision也可以)

就是Compose

import albumentations as A

transform = A.Compose([
    A.Ra
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值