LLM 安全培训和越狱

Meta、Google、OpenAI、Anthropic 等在公开发布之前都投入了大量精力来审查其模型的输出,并设置安全使用的护栏。尽管他们付出了努力,但越狱仍然会发生,即使是最新版本也是如此。根据 [1],GPT4 很容易受到基于说服的攻击,事实上比旧版 ChatGPT 更容易受到攻击。

LLM 安全培训和越狱

新的和更复杂的模型带来了新的和尚未发现的漏洞,这意味着安全训练协议需要跟上 LLM 不断增强的能力(特别提到 Claude,它似乎保持着强劲势头)。所以我试着看看最近的一些越狱方法,以及让 Claude 2 脱颖而出的安全训练过程的差异。

我的目标不是将每个人都变成 LLM 黑客(希望现在大多数问题都已经得到解决,这些论文中的结果在发表之前已经与感兴趣的各方共享),而是了解成功攻击背后的主要概念和当前安全培训程序的局限性。

LLM越狱方法

目前最常见、最系统的越狱手段可以分为以下几种:

1. 目标相冲突的快速工程

LLM 经过几轮训练,每轮都有不同的目标:基础训练侧重于下一个标记预测,微调侧重于任务(遵循指令、文本摘要、问答等),安全

### 大型语言模型在网络安全的应用 #### 威胁情报信息抽取的发展历程 自2015年起,非结构化威胁情报的抽取经历了显著发展。早期的研究主要集中在基础的数据处理技术实现上;随着时间推移,研究者们逐渐引入更先进的算法来提升效率与准确性。到了2023年,随着大型预训练语言模型(LLMs) 特定领域微调后的语言模型(PLMs) 的兴起,在开源威胁情报的信息抽取方面取得了新的突破[^2]。 #### 使用LLM进行威胁情报分析的具体案例 最新的工作中展示了如何利用LLM来进行高效的威胁情报收集解析。这类模型能够自动识别并分类网络攻击模式、恶意软件特征以及潜在的安全风险点。例如,通过自然语言理解(NLU),LLM可以从大量的未标注文档中挖掘有价值的情报线索,并将其转化为可供分析师使用的结构化数据形式。 #### 性能对比及成本效益考量 当考虑将LLM应用于实际的企业环境中时,除了关注其强大的功能外,还需要权衡性能表现与部署成本之间的关系。研究表明,在某些情况下,尽管传统的小规模语言模型(SLMs)可能不如LLM那样具备广泛的知识覆盖面,但在特定任务上的执行速度更快且所需计算资源较少。因此,选择合适的工具取决于具体应用场景的需求。 #### 应对现有挑战的方法论探讨 值得注意的是,当前LLM仍面临一些固有的局限性,比如难以完全理解解释复杂的上下文环境,或是容易受到对抗样本的影响而产生误导性的输出结果。针对这些问题,研究人员正在积极探索多种改进方案,包括但不限于增强监督学习机制、优化参数调整策略等措施,旨在进一步提高系统的鲁棒性可靠性。 ```python # Python代码示例:使用Hugging Face Transformers库加载预训练好的安全相关LLM模型 from transformers import pipeline nlp = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english") result = nlp("This is an example sentence that might contain security-related content.") print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值