python sklearn.svm.SVC支持向量机实例

本文通过使用Scikit-learn库中的SVM分类器,对Iris数据集进行分类,并通过matplotlib绘制了不同核函数下的决策边界。同时,还展示了如何可视化分割超平面,通过线性SVM对人工生成的数据进行分类。
摘要由CSDN通过智能技术生成

分类

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm,datasets

def make_meshgrid(x,y,h=.02):
    x_min,x_max=x.min()-1,x.max()+1
    y_min,y_max=y.min()-1,y.max()+1
    xx,yy=np.meshgrid(np.arange(x_min,x_max,h),
                      np.arange(y_min,y_max,h))
    return xx,yy

def plot_contours(ax,clf,xx,yy,**params):
    z=clf.predict(np.c_[xx.ravel(),yy.ravel()])
    z=z.reshape(xx.shape)
    out=ax.contourf(xx,yy,z,**params)
    return out

iris=datasets.load_iris()
x=iris.data[:,:2]
y=iris.target

c=1.0
models=(svm.SVC(kernel='linear',C=c),
        svm.LinearSVC(C=c,max_iter=10000),
        svm.SVC(kernel='rbf',gamma=0.7,C=c),
        svm.SVC(kernel='poly',degree=3,gamma='auto',C=c))
models=(clf.fit(x,y) for clf in models)

titles=('SVC with linear kernel',
       'LinearSVC(linear kernel)',
       'SVC with RBF kernel',
       'SVC with polynomial (degree 3) kernel')
fig,sub=plt.subplots(2,2)
plt.subplots_adjust(wspace=0.4,hspace=0.4)

x0,x1=x[:,0],x[:,1]
xx,yy=make_meshgrid(x0,x1)

for clf,title,ax in zip(models,titles,sub.flatten()):
    plot_contours(ax,clf,xx,yy,
                  cmap=plt.cm.coolwarm,alpha=0.8)
    ax.scatter(x0,x1,c=y,cmap=plt.cm.coolwarm,s=20,edgecolors='k')
    ax.set_xlim(xx.min(),xx.max())
    ax.set_ylim(yy.min(),yy.max())
    ax.set_xlabel('sepal length')
    ax.set_ylabel('sepal width')
    ax.set_xticks(())
    ax.set_yticks(())
    ax.set_title(title)
    
plt.show()

分割超平面

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs

X,y=make_blobs(n_samples=40,centers=2,random_state=6)
print(X,y)

clf=svm.SVC(kernel='linear',C=1000)
clf.fit(X,y)
plt.scatter(X[:,0],X[:,1],c=y,s=30,cmap=plt.cm.Paired)

ax=plt.gca()
xlim=ax.get_xlim()
ylim=ax.get_ylim()

xx=np.linspace(xlim[0],xlim[1],30)
yy=np.linspace(ylim[0],ylim[1],30)
YY,XX=np.meshgrid(yy,xx)
print(YY)
xy=np.vstack([XX.ravel(),YY.ravel()]).T
Z=clf.decision_function(xy).reshape(XX.shape)

ax.contour(XX,YY,Z,colors='k',levels=[-1,0,1],alpha=0.5,
           linestyles=['--','-','--'])
ax.scatter(clf.support_vectors_[:,0],clf.support_vectors_[:,1],s=100,
           linewidth=1,facecolors='none',edgecolors='k')
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值