分类
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm,datasets
def make_meshgrid(x,y,h=.02):
x_min,x_max=x.min()-1,x.max()+1
y_min,y_max=y.min()-1,y.max()+1
xx,yy=np.meshgrid(np.arange(x_min,x_max,h),
np.arange(y_min,y_max,h))
return xx,yy
def plot_contours(ax,clf,xx,yy,**params):
z=clf.predict(np.c_[xx.ravel(),yy.ravel()])
z=z.reshape(xx.shape)
out=ax.contourf(xx,yy,z,**params)
return out
iris=datasets.load_iris()
x=iris.data[:,:2]
y=iris.target
c=1.0
models=(svm.SVC(kernel='linear',C=c),
svm.LinearSVC(C=c,max_iter=10000),
svm.SVC(kernel='rbf',gamma=0.7,C=c),
svm.SVC(kernel='poly',degree=3,gamma='auto',C=c))
models=(clf.fit(x,y) for clf in models)
titles=('SVC with linear kernel',
'LinearSVC(linear kernel)',
'SVC with RBF kernel',
'SVC with polynomial (degree 3) kernel')
fig,sub=plt.subplots(2,2)
plt.subplots_adjust(wspace=0.4,hspace=0.4)
x0,x1=x[:,0],x[:,1]
xx,yy=make_meshgrid(x0,x1)
for clf,title,ax in zip(models,titles,sub.flatten()):
plot_contours(ax,clf,xx,yy,
cmap=plt.cm.coolwarm,alpha=0.8)
ax.scatter(x0,x1,c=y,cmap=plt.cm.coolwarm,s=20,edgecolors='k')
ax.set_xlim(xx.min(),xx.max())
ax.set_ylim(yy.min(),yy.max())
ax.set_xlabel('sepal length')
ax.set_ylabel('sepal width')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
plt.show()
分割超平面
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs
X,y=make_blobs(n_samples=40,centers=2,random_state=6)
print(X,y)
clf=svm.SVC(kernel='linear',C=1000)
clf.fit(X,y)
plt.scatter(X[:,0],X[:,1],c=y,s=30,cmap=plt.cm.Paired)
ax=plt.gca()
xlim=ax.get_xlim()
ylim=ax.get_ylim()
xx=np.linspace(xlim[0],xlim[1],30)
yy=np.linspace(ylim[0],ylim[1],30)
YY,XX=np.meshgrid(yy,xx)
print(YY)
xy=np.vstack([XX.ravel(),YY.ravel()]).T
Z=clf.decision_function(xy).reshape(XX.shape)
ax.contour(XX,YY,Z,colors='k',levels=[-1,0,1],alpha=0.5,
linestyles=['--','-','--'])
ax.scatter(clf.support_vectors_[:,0],clf.support_vectors_[:,1],s=100,
linewidth=1,facecolors='none',edgecolors='k')
plt.show()