autodl的云端中进行部署训练:
1.在autodl中root下创建一个新的dir:DEMO,不能用我们本地运行过的coop代码,路径上会经常报错
2.在DEMO中,把coop的git的代码加载进去
GitHub - KaiyangZhou/CoOp: Prompt Learning for Vision-Language Models (IJCV'22, CVPR'22)
zip文件先现在到本地的download中,然后上传,用linux的解压方式解压到 DEMO当前文件夹中
同理把Dassl的 脚本进行上传并解压
3. 在autodl的terminal中conda一个环境:test,python自动默认
4.需要把数据集下载并上传到 demo/coop/DATA(自己创建的dir),注意文件结构:/DATA/oxford_flowers /四个数据集
我只跑了如下图的这个数据集,比较小。CoOp/DATASETS.md at main · KaiyangZhou/CoOp · GitHub
注意这里一个data是xgz格式的,找合适的linux解压tgz格式的命令
tar -xzf 102flowers.tgz
5.需要把 Dass 安装到test的环境中,dir切换到demo/ ,或者demo/之后的任何dir进行install都可以
pip install ./Dassl.pytorch-master
6.改变main.sh的的path路径,设置为相对路径,是数据集的路径
我的数据集放入在DATA中:./DATA/oxford_flowers /四个数据集
7.开始在DEMO文件夹下下,执行运行命令:
bash scripts/coop/main.sh oxford_flowers rn50_ep50 end 16 1 False
8.注意: 需要把output每次都删除
在kaggle中进行执行