1.下载anaconda 的m芯片版本
2.创建环境 d2l :
conda create --name d2l python=3.9 -y
-y
:自动确认所有操作,免去手动输入确认(例如 "Proceed ([y]/n)?")。
激活新环境 :conda activate dl2
安装包:
(# 安装 PyTorch 和其他必要包,支持 MPS
pip install torch==1.12.0+cpu torchvision==0.13.0+cpu torchaudio --extra-index-url https://download.pytorch.org/whl/metal
pip install d2l==0.17.6
pip install matplotlib transformers datasets。这个不起作用 不用它)
卸载现有版本(如果你想确保没有残留冲突): 在升级前,可以先卸载之前安装的版本,确保清理干净,避免任何潜在的冲突:
pip uninstall torch torchvision torchaudio
更新pip:
有时问题可能出现在 pip
版本较旧,导致安装包时出现问题。可以通过以下命令更新 pip
:
pip install --upgrade pip
安装合适的版本(支持 MPS 后端): 如果你想确保安装 支持 MPS 后端 的版本,可以执行:
pip install torch==1.13.1 torchvision==0.14.0 torchaudio==0.13.0
下一步验证:
可以通过以下命令验证 MPS 后端 是否已启用
进入 Python 环境:
python
在 Python 环境中输入以下代码:
import torch
print(torch.backends.mps.is_available()) # 如果返回 True,则表示启用了 MPS 后端
d2l包导入会出现问题,需要修改导入的模式:
conda install numpy=1.21.5
然后再装d2l
conda install -c conda-forge d2l=0.17.6
conda-forge 社区驱动的频道更容易解决问题。使用了 ::
语法,明确指定了 conda-forge
频道中的包。这种方式在 conda
中用于显式地标识包的来源,避免了多个渠道有同名包时的冲突