动手学深度学习-M4Pro芯片GPU配置,d2l包导入会出现问题

1.下载anaconda 的m芯片版本 

2.创建环境 d2l :

conda create --name d2l python=3.9 -y

-y:自动确认所有操作,免去手动输入确认(例如 "Proceed ([y]/n)?")。

激活新环境 :conda activate dl2
 

安装包:

(# 安装 PyTorch 和其他必要包,支持 MPS
pip install torch==1.12.0+cpu torchvision==0.13.0+cpu torchaudio --extra-index-url https://download.pytorch.org/whl/metal
pip install d2l==0.17.6
pip install matplotlib transformers datasets。这个不起作用 不用它)

卸载现有版本(如果你想确保没有残留冲突): 在升级前,可以先卸载之前安装的版本,确保清理干净,避免任何潜在的冲突:

pip uninstall torch torchvision torchaudio

更新pip:

有时问题可能出现在 pip 版本较旧,导致安装包时出现问题。可以通过以下命令更新 pip

pip install --upgrade pip

安装合适的版本(支持 MPS 后端): 如果你想确保安装 支持 MPS 后端 的版本,可以执行:

pip install torch==1.13.1 torchvision==0.14.0 torchaudio==0.13.0

下一步验证

可以通过以下命令验证 MPS 后端 是否已启用

进入 Python 环境:

python


在 Python 环境中输入以下代码:

import torch
print(torch.backends.mps.is_available())  # 如果返回 True,则表示启用了 MPS 后端

 d2l包导入会出现问题,需要修改导入的模式:

conda install numpy=1.21.5
然后再装d2l 

conda install -c conda-forge d2l=0.17.6 

conda-forge 社区驱动的频道更容易解决问题。使用了 :: 语法,明确指定了 conda-forge 频道中的包。这种方式在 conda 中用于显式地标识包的来源,避免了多个渠道有同名包时的冲突

### PyTorch在配备M4芯片的Mac上的安装与配置 对于希望在搭载Apple M4芯片的Mac设备上运行PyTorch的应用程序开发者而言,重要的是要理解当前官方支持的情况以及推荐的操作流程[^1]。 #### 安装环境准备 由于Apple Silicon架构的独特性,在开始之前需确认操作系统版本至少为macOS Monterey (12.0) 或更新版本。建议通过Homebrew来管理依赖项,这可以简化后续软件的获取过程: ```bash /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" ``` #### 创建虚拟环境并激活 为了保持项目的独立性和稳定性,创建一个新的Python虚拟环境是一个良好的实践方法: ```bash python3 -m venv pytorch-env source pytorch-env/bin/activate ``` #### 安装PyTorch 鉴于目前针对Apple Silicon优化过的二进制文件可能尚未完全普及,一种可靠的方式是从源码编译或利用社区维护的预构建轮子(wheel),例如来自Unofficial Windows Binaries for Python Extension Packages站点提供的适用于ARM架构的.whl文件。然而更简便的方法是直接采用pip工具配合特定标志符完成安装操作: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu ``` 注意上述命令默认安装不带GPU加速的支持版本;如果需要Metal Performance Shaders(MPS)硬件加速,则应调整URL指向相应资源[^2]。 #### 验证安装成功与否 可以通过执行简单的测试脚本来验证是否正确设置了开发环境: ```python import torch print(torch.__version__) if torch.backends.mps.is_available(): print('MPS device found.') else: print('No MPS device detected.') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值