数字图像处理专题
文章平均质量分 59
凌风探梅
这个作者很懒,什么都没留下…
展开
-
数字图像处理基本知识
二、 数字图像处理的概念1. 什么是图像“图”是物体投射或反射光的分布,“像” 是人的视觉系统对图的接受在大脑中形成的印象或反映。 是客观和主观的结合。2数字图像是指由被称作象素的小块区域组成的二维矩阵。将 物理图象行列划分后,每个小块区域称为像素(pixel)。 –每个像素包括两个属性:位置和灰度。对于单色即灰度图像而言,每个象素的亮度用一个数值来表示转载 2016-09-08 13:49:46 · 7006 阅读 · 0 评论 -
几种图像处理库的研究
几种图像处理库的研究http://blog.csdn.net/byxdaz/article/details/3972293目前比较出名的图像处理库有很多,比如LEADTOOLS,这个是功能非常强大的图像多媒体库,但是这个是收费注册的。开源的图像库也有不少,比如:ImageStone、GIMP、CxImage等,虽然它们的功能没有LEADTOOLS强大,但是一般的图像处理是可以应付的。下转载 2017-02-20 14:22:15 · 5368 阅读 · 0 评论 -
几种颜色模型的转换公式
from: 几种颜色模型的转换公式在做图像处理时,我们一般采用的是RGB空间,但是在某些特殊情况下,我们也会用到其他的颜色空间。本文主要介绍一些常见的颜色空间的概念和转换公式。颜色的实质是一种光波。它的存在是因为有三个实体:光线、被观察的对象以及观察者。人眼是把颜色当作由被观察对象吸收或者反射不同波长的光波形成的。例如,当在一个晴朗的日子里,我们看到阳光下的某物体呈现红色时,那转载 2017-02-20 14:24:07 · 1907 阅读 · 0 评论 -
ViBe算法原理和代码解析
ViBe - a powerful technique for background detection and subtraction in video sequences算法官网:http://www2.ulg.ac.be/telecom/research/vibe/描述ViBe是一种像素级视频背景建模或前景检测的算法,效果优于所熟知的几种算法,对硬件内转载 2017-02-13 10:50:02 · 1618 阅读 · 0 评论 -
运动目标检测ViBe算法
运动目标检测ViBe算法一、运动目标检测简介 视频中的运动目标检测这一块现在的方法实在是太多了。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。先简单从视频中的背景类型来讨论。 静态背景下的目标检测,就是从序列图像中将实际的变化区域和背景区分开了。在背景静止的大前提下进行运动目标检测的方法有很多转载 2017-02-13 11:17:06 · 3788 阅读 · 0 评论 -
背景建模--Vibe 算法优缺点分析
背景建模--Vibe 算法优缺点分析一、Vibe 算法的优点 Vibe背景建模为运动目标检测研究邻域开拓了新思路,是一种新颖、快速及有效的运动目标检测算法。其优点有以下两点: 1、思想简单,易于实现。Vibe通常随机选取邻域20个样本为每个像素点建立一个基于样本的背景模型,具有初始化速度快、内存消耗少和占用资源少等优点,随后,利用一个二次抽样因子φ,使有限的转载 2017-02-13 11:21:04 · 1986 阅读 · 0 评论 -
背景建模--Vibe 算法改进
背景建模--Vibe 算法改进一、概述 针对鬼影问题,提出一种了基于前景区域与邻域背景区域直方图相似性度量的判别方法,检测并消除鬼影;针对静止目标问题,改进了Vibe背景模型的更新策略,有效抑制静止目标被吸收为背景;针对阴影前景问题,在Vibe算法中增加一个阴影检测器模型,检测并消除阴影。针对目标不完整问题引入抠图技术。二、鬼影检测 针对鬼影问题,本文提转载 2017-02-13 11:22:40 · 2034 阅读 · 0 评论 -
opencv-视频处理-实时的前景检测-Vibe算法
vibe算法是一种像素级的前景检测算法,实时性高,内存占有率低,前景检测准确率高。但是会出现“鬼影”,当然基于对鬼影的处理,也会有相应的对vibe算法的改进。把下面三篇文章看明白,基本就会掌握vibe算法的过程:《 ViBe: a powerful random technique to estimate the background in video sequences》《Backg转载 2017-02-13 11:29:39 · 2585 阅读 · 0 评论 -
DeepLab:语义图像分割
DeepLab:语义图像分割,采用深度卷积网络、完全连接CRF技术。DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs,项目论文数据等:http://t.cn/RxbHYZt 代码:http://t.cn/RxbHYZc 原创 2017-02-22 09:55:47 · 3061 阅读 · 0 评论 -
各种距离的解释
在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量作一个总结。本文目录:1.欧氏距离2.曼哈顿距离3. 切比雪夫距离4. 闵可夫斯基距离5.标准化欧氏距离6转载 2017-02-21 13:56:43 · 1166 阅读 · 0 评论 -
黑白图像与灰度图像
灰度图像(通常意义上的黑白图像)图像的每个像素只有一个亮度信息的单色图像。其中的亮度信息,采样自从白色与黑色之间划分的若干等级。例如,下面两幅图像为灰度信息描述的图像。灰度阶: 从白色到黑色划分的等级数。一般为2^n,常用的灰度阶为256,用单个字节(8bit,256=2^8)就可以存储每一个灰度值。黑白图像真正的黑白图像(也称为二值图像)是由黑色和白色两种原创 2017-01-02 11:38:39 · 13331 阅读 · 1 评论 -
CVPR 2014 ObjectnessBING 原文翻译
from: CVPR 2014 ObjectnessBING 原文翻译 BING: Binarized Normed Gradients for Objectness Estimation at 300fps Ming-Ming Cheng, Ziming Zhang, Wen-Yan Lin, Phili...转载 2018-07-12 16:01:18 · 534 阅读 · 0 评论 -
视觉图像资料URL
大部分转载自博客园大神:http://www.cnblogs.com/einyboy/p/3594432.html ,并进行了部分更新修改~目录如下:1.特征提取Feature Extraction;2. 图像分割Image Segmentation; 3. 目标检测Object Detection;4. 显著性检测Saliency Detecti...转载 2018-10-11 16:46:54 · 701 阅读 · 0 评论 -
HDR (automatic exposure control + Tonemapping + Bloom)
<div class="markdown_views"> <!-- flowchart 箭头图标 勿删 --> <svg xmlns="http://www.w3.org/2000/svg" style="display: none;"><path stroke-linecap="转载 2018-09-30 10:51:07 · 882 阅读 · 0 评论 -
Tone mapping进化论
from: 知乎 https://zhuanlan.zhihu.com/p/21983679这几年,随着拍摄设备、渲染方法和显示设备的发展,HDR慢慢会成为标配。照相机和摄像机可以捕捉到HDR的影响,渲染过程中可以产生HDR的画面。这些内容如果需要显示到LDR的设备上,就需要一个称为tone mapping的过程,把HDR变成LDR。现在高端的显示器和电视也可以直接显示出HDR的内容。然而和...转载 2018-09-30 16:10:26 · 2558 阅读 · 0 评论 -
低秩矩阵的应用--背景建模
背景建模是从拍摄的视频中分离出背景和前景。由于背景的视频基本是不变的,所以如果把每帧当做一个矩阵的一列那么,矩阵是低秩的,所以低秩矩阵的恢复来恢复出背景。今天主要完成了,在自己的数据库让进行背景和前景的分离。下面为主要步骤:1.从马毅的实验室网址下载RPCA求解的代码http://perception.csl.illinois.edu/matrix-rank/introduction.转载 2017-02-20 11:40:03 · 2188 阅读 · 0 评论 -
Google 超分辨率技术 RAISR:模糊图片瞬间变清晰,运算速度快十倍
1 月 11 日,Google+ 团队在其官方博客介绍了一种叫 RAISR(Rapid and Accurate Image Super Resolution)的新技术,它使用机器学习方法,训练系统分析同一张图片的高质量版本和低质量版本,找出高质量版本更好的原因,再在低质量版本模拟出高质量版本图片的效果。和这个过程类似的是对图片的锐化和增强对比度的操作,即通过放大底层细节,来改善模糊图片的质量。但是,锐化同时增加图像的噪点,让图片看起来有很多小颗粒,经常使用 Photoshop 处理照片的同学应该深有体原创 2017-01-17 15:22:00 · 14803 阅读 · 0 评论 -
高动态范围图像-多图
高动态范围图像-多图原创 2016-10-18 08:40:58 · 3145 阅读 · 0 评论 -
高动态范围图像-单图
高动态范围图像-单图原创 2016-10-18 08:40:28 · 2160 阅读 · 0 评论 -
数字图像处理的基本原理和常用方法
from: http://b2museum.cdstm.cn/identification/sztxcl-relative.htm数字图像处理的基本原理和常用方法 数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于 20 世纪 50 年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约转载 2016-10-07 23:21:59 · 4192 阅读 · 0 评论 -
几种常用的图像处理函数库
from:http://www.wtoutiao.com/p/18a4MqP.html几种常用的图像处理函数库OpenCVOpenCV的全称是:Open Source Computer Vision Library。OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列 C转载 2016-10-07 23:27:19 · 7156 阅读 · 0 评论 -
历届 SIGGRAPH 上有什么新奇、有趣的项目?
from: https://www.zhihu.com/question/25064719历届 SIGGRAPH 上有什么新奇、有趣的项目?1 条评论默认排序按时间排序13 个回答王立武CS PhD Student, 吉他手834 人赞同论文的第一作者点了个赞! @张译中======转载 2016-10-31 16:01:36 · 2872 阅读 · 0 评论 -
2013cvpr的总结
显著性Saliency Aggregation: A Data-driven Approach Long Mai, Yuzhen Niu, Feng Liu 现在还没有搜到相关的资料,应该是多线索的自适应融合来进行显著性检测的PISA: Pixelwise Image Saliency by Aggregating Complementary Appearance Contrast转载 2016-11-30 21:52:14 · 1200 阅读 · 0 评论 -
图像的表示和可视化
图像有视觉效果的客观对象的画面表示。例如,存储在不同介质上的拍摄作品,数码相机拍摄的照片。数字图像存储在计算或者各种电子设备中的、通过离散采样数据表示视觉画面的文件。数学定义 一副数字图像可以表示为一个二维函数f(x,y), x,y为空间坐标, f为图像在坐标(x,y)处的强度或者灰度。像素组成数字图像的元素,每个元素都有一个特定的位置和幅值。通常说的图像的分辨率原创 2017-01-02 11:33:36 · 1348 阅读 · 0 评论 -
彩色图像和颜色空间
彩色图像顾名思义,为色彩比较丰富的图像,如下图所示。颜色空间计算机系统中表示现实世界各种颜色的色彩模型。常用的颜色空间有RGB,CMY,HSI等。不同的色彩空间只是同一物理量的不同表示法。RGB颜色空间主要用于计算机图形学中,依据人眼识别的颜色创建,图像中每一个像素都具有R,G,B三个颜色分量组成,这三个分量大小均为[0,255]。通常表示某个颜色的时候,写成一个3维向原创 2017-01-02 11:50:23 · 1767 阅读 · 0 评论 -
数字图像处理的三个层次
数字图像处理分为三个层次:低级图像处理、中级图像处理和高级图像处理。(1)低级图像处理内容内容:主要对图象进行各种加工以改善图象的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。特点:输入是图像,输出也是图像,即图像之间进行的变换。(2)中级图像处理内容:主要对图像中感兴趣的目标进行检测(或分割)和测量,以获原创 2016-09-08 13:45:17 · 22453 阅读 · 1 评论 -
常见的图片格式
常见的图像格式1) BMP――(Bimap) Microsoft公司的点位图格式, 支持1~24bit色彩,BMP格式无损保存图像每个像素的信息,因此文件也比较大。2) GIF―― (Graphics Interchange Format)只支持256色,支持透明背景和动画。3) PNG―― 网景公司开发,支持24bit色彩, 压缩不失真并支持透明背景和变显图像的。4) TIFF—原创 2017-01-02 15:05:51 · 1452 阅读 · 0 评论 -
图像的采样和量化
采样和量化图像的获取(数字化)是通过传感器完成的,获取包含采样和量化两个过程采样是对现实空间场景(坐标的)离散化形成数字化表示的过程。(也就是用空间上部分点的灰度值代表图像,这些点称为采样点。)模拟图像经过采样后,在时间和空间上离散化为像素。但采样所得的像素值(即灰度值)仍是连续量。把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化(也就是原创 2017-01-02 23:57:46 · 13172 阅读 · 0 评论 -
高动态范围(HDR)
from:http://www.cnblogs.com/walespeng/p/4201433.html高动态范围(HDR) 高动态范围(High-Dynamic Range,简称HDR),又称宽动态范围技术,是在非常强烈的对比下让摄像机看到影像的特色而运用的一种技术。 当在强光源(日光、灯具或反光等)照射下的高亮度区域及阴影、逆光等相对亮度较低的区域在图像中同时存在时,摄像机输出的转载 2017-01-06 20:57:58 · 3818 阅读 · 0 评论 -
数字图像处理目录列表
基础知识,颜色空间与彩色图像,灰度变换与空间滤波,频率域滤波,图像分割,小波和多分辨率,图像压缩,形态学,图像复原与重建,表示和描述,目标检测&目标识别&追踪算法,特征提取&图像检索&分类识别,机器学习,深度学习,增强现实,图像滤镜,视频特效,指纹识别&破解,其他生物特性识别,图像融合,图像拼接全景拼接,OCR文字识别,条形码二维码,高动态范围图像HDR图像,图像放大缩小和超分辨率原创 2016-09-26 15:31:33 · 3853 阅读 · 0 评论 -
无参考图像的清晰度评价方法
无参考图像的清晰度评价方法 from:http://nkwavelet.blog.163.com/blog/static/227756038201461532247117 在无参考图像的质量评价中,图像的清晰度是衡量图像质量优劣的重要指标,它能够较好的与人的主观感受相对应,图像的清晰度不高表现出图像的模糊。本文针对无参考图像质量评价应用,对目前几种较为常用的...转载 2016-03-08 16:06:22 · 55164 阅读 · 20 评论