人工智能基础复习4——不确定知识与推理

本文主要复习了人工智能中处理不确定知识的两个核心主题:第13章介绍了不确定性,探讨了在面对不确定信息时如何推理;第14章深入讲解了贝叶斯网络,这是一种强大的概率推理工具,用于建模和解决复杂问题。
摘要由CSDN通过智能技术生成

13 Uncertainty

Outline
不确定性(Uncertainty)
概率(Probability)
语法和语义
推理
独立性及贝叶斯法则

不确定性
一个Agent从不可能完全地确定一个世界或一个领域的状态,因为其中包含太多含糊性和不确定性
可能/概率推理
我已经得到这个证据,这个结论是正确的概率有多少?
我脖子僵硬,那么我得脑膜炎的概率有多大?
假设我们有一个规则:如果牙痛那么问题来源于牙洞
但是不是所有病人的牙痛都是因为有牙洞,所以我们可以像这样设置规则:如果牙痛并且没有牙龈疾病并且没有补牙,并且...,那么问题来源于牙洞
这会让问题更复杂,更好的方法是:如果牙痛,那么问题来源于牙洞的概率是0.8或者P(cavity | toothache) = 0.8
假设行动At为在航班起飞前t分钟前往机场,At能够让我准时到达么?
问题:部分可观察性(路况、其他司机的计划等)、嘈杂的传感器(交通报道)、不确定的行动结果(车轮漏气等)、极复杂的交通建模和预测
逻辑方法:
错误风险:A25可以让我按时到达=>A25可以让我按时到达,前提是没有交通事故、不下雨、轮胎不出问题等(这对于做决策没有太大帮助)
A1440显然可以让我按时到达但是我必须在机场过夜……

真实世界的不确定性和建模
真实不确定性:规则在本质上是有概率性的,如掷骰子、抛硬币
惰性:为了确保得到一个没有任何意外的规则,需要列出前提和结论的完整集合,这个工作量太大,这样的规则也难以使用
理论的无知:没有完整的结论,问题领域并不完整,持续性理论,如医学诊断
实践的无知:即使知道所有的规则,也不可能收集关于一个特定病例的所有相关信息

解决不确定性的方法
概率理论作为一个形式化手段,利用不确定性知识进行表示和推理,在一个命题中(事件、结论、诊断)提供信念度,如A25使我按时到达机场的概率为0.04
概率是不确定性的语言——现代AI的重要核心

概率
概率理论提供了一种方法以概括来自我们的惰性和无知的不确定性
概率断言总结了:
惰性:难以列举例外、条件等;无知:缺少相关事实、初始条件等
主观概率:agent自身知识状态的命题概率,如P(A25 | no reported accidents) = 0.06
没有关于世界的断言
命题因为新条件而改变的概率,如P(A25 | no reported accidents, 5 a.m.) = 0.15

在不确定性情况下做决策
假设我知道:
P(A25能按时到达 | ...) = 0.04;P(A90能按时到达 | ...) = 0.70;P(A120能按时到达 | ... ) = 0.95;P(A1440能按时到达 | ...) = 0.9999
我应该选择什么行动呢?取决于我关于错过航班和等待时间消耗上的偏好
效用理论(Utility theory):对偏好进行表示和推理
决策理论 = 概率理论 + 效用理论

语法
基本元素:随机变量
现实世界中具有不确定性的事件的随机变量,通常以大写开头,如Cavity,Weather,Temperature
与命题逻辑相似:对随机变量赋值来定义可能的世界
布尔随机变量,如Cavity(牙洞)(do I have a cavity?)
离散随机变量,如Weather is one of <sunny, rainy, cloudy, snow>
定义域值必须是穷尽的和互斥的
连续随机变量,如Temp=21.6,同样如 Temp<22.0
基本命题由对一个随机变量赋值构成,如Weather=sunny,Cavity=false(简写为 ¬ cavity)
复杂命题由基本命题和标准逻辑连接词构成,如Weather=sunny  Cavity=false
原子事件:对智能体无法确定的世界状态的一个完整的详细描述
如,若世界只由两个布尔变量Cavity和Toothache构成,那么存在4种不同的原子事件:
Cavity=false  Toothache=false;Cavity=false  Toothache=true;Cavity=true  Toothache=false;Cavity=true  Toothache=true
原子事件是互斥和详尽的

概率公理
对任意命题A,B,有
0 ≤ P( A ) ≤ 1
P( true ) = 1 and P( false ) = 0
P( A B ) = P( A ) + P( B ) - P( A B )

先验概率
命题的先验或无条件概率:在没有任何其它信息存在的情况下关于命题的信度
概率分布给出一个随机变量所有可能取值的概率, P ( Weather ) = <0.72,0.1,0.08,0.1> ( normalized (归一化的) , i.e., sums to 1)
联合概率分布给出一个随机变量集的值的全部组合的概率,P(Weather,Cavity)=a, 4×2 matrix of values

连续变量的概率
将分布表示为值的参数化函数:P(X=x)=U[18,26](x) = 18和26之间的均匀密度分布
高斯函数...

边缘概率分布
边缘概率分布是消除变量后的子表
边缘化(求值消元):联合相同行的加和值:P(X1=x1)=∑P(X1=x1,X2=x2)

条件概率
条件概率或后验概率:P(a | b)
如P(cavity | toothache) = 0.8
条件概率分布:
P(cavity | toothache) = a single number
P(Cavity,Toothache) = 2×2 table summing to 1
P(Cavity | Toothache) = 2-element vector of 2-element vectors
如果我们知道更多条件,如牙洞已知,则有P(cavity | toothache,cavity) = 1
新条件可能不相关,可以简化,如P(cavity | toothache,sunny) = P(cavity | toothache) = 0.8,这种推理和领域知识有关
条件概率的定义:
P(a | b) = P(a b) / P(b) if P(b) > 0
乘法规则给出一个替代的公式: P(a b) = P(a | b) P(b) = P(b | a) P(a)
链式法则由乘法规则推导得出:P(X1,...,Xn)=...=∏i=1~n P(Xi | X1,...,Xi-1)
条件概率和标准概率类似,如
0 <= P(a | e) <= 1
P(a1   | e) + P(a2   | e) + ... + P(ak   | e) = 1 
P(¬a | e) = 1 - P(a | e) 

通过枚举推理
全联合概率分布
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值