一个加入行为因子的合型

本文介绍了Daniel, Hirshleifer, and Sun (2018)提出的复合三因子模型,该模型结合市场因子、长期行为因子(FIN)和短期行为因子(PEAD),用于解释资产定价中的异象。FIN因子通过公司股票发行和回购捕捉过度自信导致的错误定价,PEAD因子则通过收益公告后的漂移揭示有限注意力的影响。这两个行为因子分别针对长短期的市场异象,为多因子模型提供新视角。" 119985573,8031836,Cesium动态绘制圆,"['Cesium', '前端开发', 'CSS', 'HTML']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转 一个加入行为因子的复合模型

作者:石川,北京量信投资管理有限公司创始合伙人,清华大学学士、硕士,麻省理工学院博士;精通各种概率模型和统计方法,擅长不确定性随机系统的建模及优化。知乎专栏:https://zhuanlan.zhihu.com/mitcshi。未经授权,严禁转载。

摘要:Daniel, Hirshleifer, and Sun (2018) 提出了两个行为因子,在市场因子基础上构建了复合三因子模型,为实证资产定价提供了新的思路。

1、引言

2018 年,最新一届的 Hillcrest Behavioral Finance Award 授予了 Daniel, Hirshleifer, and Sun (2018) 这篇题为 Short- and long-horizon behavioral factors 的文章(下称 DHS)。这篇文章从来自 75 个研究机构的 103 为作者所提交的 56 篇文章中脱颖而出,获此殊荣。

从它的题目中就能看出,该文提出了长、短两个时间尺度上的行为因子(behavioral factors)。这两个行为因子旨在捕捉由于过度自信和有限注意力造成的定价错误,从而解释学术界之前发现的大量选股异象。此外,它结合市场因子一起构建了一个复合三因子模型(a three-factor risk-and-behavioral composite model),为多因子模型的研究提供了新的思路。

从行为金融学的角度出发,股票收益率之间的共同运动(comovement)通常有两个原因:

1. 股票错误定价上的共性(Barberis and Shleifer 2003);

2. 投资者对于股票基本面新息的错误反映上的共性(Daniel, Hirshleifer, and Subrahmanyam 2001)。

前者指出不同的股票实际上暴露在一些共同的风格风险上,而情绪冲击(sentiment shocks)会造成同一类风格的股票收益率的共同运动,因此同一类风格上的股票存在相关性很高的定价错误。后者说明由于认知偏差,投资者难以对股票基本面方面的新息做出及时、正确的反映,因此也会导致错误定价。由于错误定价可以预测未来收益率,这意味着可以使用行为因子来构建一个多因子模型,以期更好的解释股票预期收益率之间的截面差异。这就是 Daniel, Hirshleifer, and Sun (2018) 背后的动机。

由于是要提出新的定价模型,它的任务之一是能够解释市场上的异象。按照这个思路,DHS 指出市场上的绝大多数异象按照时间尺度可以分为短(short horizon)长(long horizon)两大类;短时间尺度的异象大多来自投资者的有限注意力(limited attention)、长时间尺度的异象大多来自投资者的过度自信(overconfidence)。为此三位作者提出了捕捉长尺度异象的 FIN 因子和捕捉短尺度异象的 PEAD 因子。

2、长、短时间尺度的行为因子

先来看看捕捉长时间尺度的 FIN 因子,它使用上市公司股票发行(issuance)和回购(repurchase)计算。研究表明,由于具备信息优势,公司的管理层善于利用市场上已经形成的定价错误“择时”自己公司的股价:当他们认为公司股价过高时,往往会增发;而当公司股价被低估时,通常采取回购。另一方面,普通(非理性)投资者往往过度自信,导致对上市公司增发、回购行为反应不足,使得股价不会在短期修正。

大量(美股上)的实证表明,增发行为和未来的收益率负相关,而回购行为和未来的收益率正相关。为此,DHS 使用以下两个指标构建了他们的 FIN 因子:

1. 过去一年的 net-share-issuance(简称 NSI,出自 Pontiff and Woodgate 2008);

2. 过去五年的 composite-share-issuance(简称 CSI,出自 Daniel and Titman 2006)。

综合 NSI 和 CSI(取均值)就得到了 FIN 指标,越小越好。除此之外,DHS 采用了 Fama-French 三因子中的做法,使用 FIN 指标(按从小到大排名)和市值对上市公司进行了如下的 2 × 3 划分。

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值