作者:石川,北京量信投资管理有限公司创始合伙人,清华大学学士、硕士,麻省理工学院博士;精通各种概率模型和统计方法,擅长不确定性随机系统的建模及优化。知乎专栏:https://zhuanlan.zhihu.com/mitcshi。未经授权,严禁转载。
摘要:Daniel, Hirshleifer, and Sun (2018) 提出了两个行为因子,在市场因子基础上构建了复合三因子模型,为实证资产定价提供了新的思路。
1、引言
2018 年,最新一届的 Hillcrest Behavioral Finance Award 授予了 Daniel, Hirshleifer, and Sun (2018) 这篇题为 Short- and long-horizon behavioral factors 的文章(下称 DHS)。这篇文章从来自 75 个研究机构的 103 为作者所提交的 56 篇文章中脱颖而出,获此殊荣。
从它的题目中就能看出,该文提出了长、短两个时间尺度上的行为因子(behavioral factors)。这两个行为因子旨在捕捉由于过度自信和有限注意力造成的定价错误,从而解释学术界之前发现的大量选股异象。此外,它结合市场因子一起构建了一个复合三因子模型(a three-factor risk-and-behavioral composite model),为多因子模型的研究提供了新的思路。
从行为金融学的角度出发,股票收益率之间的共同运动(comovement)通常有两个原因:
1. 股票错误定价上的共性(Barberis and Shleifer 2003);
2. 投资者对于股票基本面新息的错误反映上的共性(Daniel, Hirshleifer, and Subrahmanyam 2001)。
前者指出不同的股票实际上暴露在一些共同的风格风险上,而情绪冲击(sentiment shocks)会造成同一类风格的股票收益率的共同运动,因此同一类风格上的股票存在相关性很高的定价错误。后者说明由于认知偏差,投资者难以对股票基本面方面的新息做出及时、正确的反映,因此也会导致错误定价。由于错误定价可以预测未来收益率,这意味着可以使用行为因子来构建一个多因子模型,以期更好的解释股票预期收益率之间的截面差异。这就是 Daniel, Hirshleifer, and Sun (2018) 背后的动机。
由于是要提出新的定价模型,它的任务之一是能够解释市场上的异象。按照这个思路,DHS 指出市场上的绝大多数异象按照时间尺度可以分为短(short horizon)和长(long horizon)两大类;短时间尺度的异象大多来自投资者的有限注意力(limited attention)、长时间尺度的异象大多来自投资者的过度自信(overconfidence)。为此三位作者提出了捕捉长尺度异象的 FIN 因子和捕捉短尺度异象的 PEAD 因子。
2、长、短时间尺度的行为因子
先来看看捕捉长时间尺度的 FIN 因子,它使用上市公司股票发行(issuance)和回购(repurchase)计算。研究表明,由于具备信息优势,公司的管理层善于利用市场上已经形成的定价错误“择时”自己公司的股价:当他们认为公司股价过高时,往往会增发;而当公司股价被低估时,通常采取回购。另一方面,普通(非理性)投资者往往过度自信,导致对上市公司增发、回购行为反应不足,使得股价不会在短期修正。
大量(美股上)的实证表明,增发行为和未来的收益率负相关,而回购行为和未来的收益率正相关。为此,DHS 使用以下两个指标构建了他们的 FIN 因子:
1. 过去一年的 net-share-issuance(简称 NSI,出自 Pontiff and Woodgate 2008);
2. 过去五年的 composite-share-issuance(简称 CSI,出自 Daniel and Titman 2006)。
综合 NSI 和 CSI(取均值)就得到了 FIN 指标,越小越好。除此之外,DHS 采用了 Fama-French 三因子中的做法,使用 FIN 指标(按从小到大排名)和市值对上市公司进行了如下的 2 × 3 划分。