西门子S7-300/400 PLC下载

本文提供了西门子STEP7不同版本的试用版下载链接,包括V5.6SP1到V5.7SP1,并介绍了简单的安装步骤,提醒注意注册表清理。同时,还分享了授权获取途径及一些相关附件,如CPU状态读取工具和S7-300/400PLC编程资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:本文为学习交流,禁止转载

一、下载方式

`提示:软件下载需要进行西门子全球资源中心注册,既然你要学西门子的软件,那建议注册一个账号,方便之后下载更多的软件!~~

1、STEP 7 V5.6 SP1/STEP 7 Professional 2017 SR1 试用版下载
STEP 7 V5.6SP1

在这里插入图片描述

2、STEP 7 V5.6 SP2 / S7-GRAPH V5.6 SP2 / STEP 7 Professional 2017 SR2
试用版下载 STEP 7 V5.6SP2

在这里插入图片描述

3、STEP 7 V5.7 / S7 GRAPH V5.7 / S7 SCL V5.7 / S7 PDIAG V5.7 / STEP 7
Professional 2021 试用版下载 STEP 7 V5.7

在这里插入图片描述

4、STEP 7 V5.7 SP1 / S7 GRAPH V5.7 SP1 / STEP 7 Professional 2021 SR1
试用版下载 STEP 7 V5.7 SP1

在这里插入图片描述

二、安装方式

1、网上安装方式一抓一大把,百度直接搜索安装方式即可,安装方式也很简单,没有很注意的地方
注意:唯一需要注意的地方就是提示重启请删除注册表
(1)在注册表内
“HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager\PendingFileRenameOperations删除注册表值"PendingFileRenameOperations”
(2)对于多次安装博途的,下面提供一种轻松解决的方法,就是通过CMD命令操作注册。

win+R运行,打开CMD命令

在这里插入图片描述
在这里插入图片描述

2、授权 网上一抓一大把,直接搜索Sim_EKB_Install找一个相对较新的版本即可
转载自eesprite的链接
转载脚本之家

三、其他附件

1、读取CPU灯状态,读取序列号,读取PROFINET IO子站状态
读取CPU灯状态,读取序列号,读取PROFINETIO子站状态
2、西门子S7-300/400 PLC编程语句表和结构化控制语言描述(第3版)
西门子S7-300/400PLC编程语句表和结构化控制语言描述(第3版)
3、S7-300常用功能块
S7-300常用功能块

四、个人主页

bilibli : 西门子PLC学习交流

### Nvidia Isaac Sim 2024入门教程 #### 安装与设置环境 为了开始使用Nvidia Isaac Sim 2024版,首先需要确保计算机满足最低硬件要求并安装必要的软件依赖项。建议的操作系统为Ubuntu 20.04 LTS或更高版本,并且推荐配备支持CUDA的GPU以加速仿真性能[^1]。 完成上述准备工作之后,可以从[NVIDIA官网](https://developer.nvidia.com/)下载Isaac Sim 4.0及其后续更新版本。此过程通常涉及注册开发者账号以及同意服务条款。一旦获取到安装文件,按照官方文档指示逐步执行安装命令即可成功部署Isaac Sim环境。 ```bash # 更新包列表并安装依赖库 sudo apt-get update && sudo apt-get install -y \ build-essential \ cmake \ git \ libgl1-mesa-dev \ libglfw3-dev \ python3-pip ``` #### 创建首个机器人模拟场景 启动Isaac Sim应用程序后,默认会进入Omniverse界面,在这里可以创建新的项目或者打开已有模板来快速上手。对于初学者来说,选择预设好的机器人模型(如Unitree Go2)作为起点是非常有帮助的选择之一[^2]。 在编辑器内调整机器人的物理属性、传感器配置以及其他参数设定之前,先熟悉下工具栏上的基本操作按钮,比如视角切换、物体移动等基础交互方式。这些技能有助于更高效地搭建复杂的实验环境。 #### 编写自定义行为逻辑 除了图形化设计之外,编写Python脚本来实现特定任务也是不可或缺的一部分。利用内置API接口可以直接操控虚拟世界里的对象动作序列或是响应外部输入事件触发相应反馈机制。下面给出一段简单的例子用于让机器人沿直线行走: ```python from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.dynamic_control import _dynamic_control dc = _dynamic_control.acquire_dynamic_control_interface() # 获取目标Actor句柄 actor_handle = dc.get_actor("/World/Go2") for i in range(100): # 循环次数可以根据实际需求修改 position = dc.get_rigid_body_pose(actor_handle).p new_position = [position.x + 0.1 * i, position.y, position.z] target_transform = _dynamic_control.Transform() target_transform.p = _dynamic_control.Vector3(new_position) dc.wake_up_actor(actor_handle) dc.set_rigid_body_pose(actor_handle, target_transform) simulation_app.close() ``` #### 测试与优化 最后一步就是反复测试所编写的程序效果如何,并不断迭代改进直至达到预期目的为止。在这个过程中可能会遇到各种各样的挑战,例如运动学计算错误或者是感知算法失效等问题都需要耐心排查解决办法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值