- 输入图片大小 W×W
- Filter大小 F×F
- 步长 S
- padding的像素数 P
N = (W − F + 2P )/S+1
输出图片大小为 N×N
池化层的功能:
* 第一,又进行了一次特征提取,所以能减小下一层数据的处理量。
* 第二,能够获得更为抽象的信息,从而防止过拟合,也就是提高了一定的泛化性
* 第三,由于这种抽象性,所以能对输入的微小变化产生更大的容忍,也就是保持了它的不变性,这里的容忍包括图像的少量平移、旋转缩放等操作变化。
N = (W − F + 2P )/S+1
输出图片大小为 N×N
池化层的功能:
* 第一,又进行了一次特征提取,所以能减小下一层数据的处理量。
* 第二,能够获得更为抽象的信息,从而防止过拟合,也就是提高了一定的泛化性
* 第三,由于这种抽象性,所以能对输入的微小变化产生更大的容忍,也就是保持了它的不变性,这里的容忍包括图像的少量平移、旋转缩放等操作变化。