多智能体强化学习理论及其应用综述

源自:模式识别与人工智能

作者:陈卓然, 刘泽阳, 万里鹏, 陈星宇, 朱雅萌, 王成泽, 程翔, 张亚, 张森林, 王晓辉, 兰旭光

摘要

强化学习是一种用于解决序列决策问题的常用机器学习方法,核心思想是让智能体与环境交互获得反馈,从而逐步学会最佳策略。随着实际应用对计算能力和数据规模的要求不断提高,单体智能转向群体智能逐渐成为人工智能未来发展的必然趋势,这为强化学习带来诸多新的机遇和挑战。文中首先从深度多智能体强化学习概念着手,针对目前的理论困境,如可拓展性较差、效用分配较难、探索-利用困境、环境非稳态、信息部分可观测等问题,进行提炼和分析。然后,详细阐述目前学者对于这些问题提出的多种解决方法及其优缺点。最后,介绍当前多智能体强化学习的典型训练学习环境和智慧城市建设、游戏、机器人控制、自动驾驶等复杂决策领域的实际应用,并总结协作多智能体强化学习面临的挑战和未来发展方向。

关键词

深度强化学习, 多智能体, 效用分配, 人类反馈, 马尔科夫决策过程

引言

1深度多智能体强化学习基本理论

1. 1深度多智能体强化学习原理

1. 2 值函数法和策略搜索法

1. 2. 1 值函数法

1. 2. 2 策略搜索法

1.

### 多智能体强化学习概述 多智能体系统(Multi-Agent Systems, MAS)涉及多个自主实体之间的交互,而多智能体强化学习(Multi-Agent Reinforcement Learning, MARL)则是让这些智能体通过与环境互动来共同优化策略的过程。MARL的研究旨在解决复杂环境中个体行为协调的问题。 在MARL领域内存在多种不同的研究方向和技术路径[^1]。尽管已有分类方法能够覆盖大部分MARL算法,但仍有部分算法无法被完全归纳到现有框架之下,或是位于几个类别的交界处,在特定综述文章中有专门章节探讨这类特殊情况[^3]。 对于希望深入了解该领域的读者来说,可以从以下几个方面入手: - **基础理论**:理解单智能体RL的基础概念及其扩展至多智能体场景下的变化; - **合作与竞争机制**:分析不同类型的MAS中如何设计奖励函数促进协作或对抗关系形成; - **通信协议的设计**:探索有限带宽条件下有效信息交换的方法论; - **可扩展性和效率提升**:针对大规模网络结构下计算资源消耗问题寻找解决方案; 此外,值得注意的是近年来深度学习技术的发展也极大地推动了MARL的进步,特别是在处理连续动作空间以及高维状态表示等方面表现出色的人工神经网络架构得到了广泛应用[^2]。 ```python # 示例代码展示了一个简单的双智能体Q-learning实现方式 import numpy as np class TwoAgentQLearning(): def __init__(self): self.q_table = {} def update(self, state, action_pair, reward, next_state): if (state,action_pair[0],action_pair[1]) not in self.q_table: self.q_table[(state,action_pair[0],action_pair[1])] = 0 max_future_q = max([self.get_value(next_state,a,b) for a in range(2) for b in range(2)]) current_q = self.get_value(state,*action_pair) new_q = (1 - alpha)*current_q + alpha*(reward + gamma*max_future_q) self.set_value(state,*action_pair,new_q) def get_value(qtable,state,a,b): try: return qtable[state][a][b] except KeyError: return 0 def set_value(qtable,state,a,b,value): if state not in qtable: qtable[state]={} if a not in qtable[state]: qtable[state][a]={} qtable[state][a][b]=value alpha=0.1 # 学习率 gamma=0.95 # 折扣因子 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值