基于深度学习的预警装备知识图谱构建方法研究

源自:现代防御技术

作者:杨丽萍, 方其庆, 胡亚慧, 谷成刚, 汪会敏

摘要:为了充分挖掘海量数据的内在关联价值,全面准确地构建预警装备领域知识图谱,提出了一种基于深度学习的预警装备知识图谱构建方法。该方法以典型非结构化文本资料为研究对象,构建预警装备领域知识图谱本体和专业词典,以驱动分词得到包含6 468个实体样本和11 216条关系样本的预警装备知识数据集。基于融合多种深度学习模型的知识抽取方法进行实体识别和关系抽取,实验结果表明:所提模型在预警装备领域表现出优异的性能,实体识别模型F1值达到91.54%,关系抽取模型F1值达到91.05%。将提取的实体关系三元组存储在Neo4j图数据库中,进一步构建了由14种实体和22种关系组成的预警装备领域知识图谱并实现可视化。

关键词:预警装备 ; 预警装备 ; 深度学习 ; 实体识别 ; 关系抽取

引言

随着信息化、网络化的到来,预警装备领域的业务数据呈现爆发式增长态势,同时还存在大量的设备类型、型号、参数和运行使用等数据。然而,当面对海量装备数据时,由于缺乏紧凑有效的组织结构和直观的可视化查询方法,没有形成相应的装备知识体系,因此,难以进行深层次的数据挖掘和应用。知识图谱以语义网络为基础,通过三元组对客观世界中的概念、实体及其关系进行统一描述,有效支持知识表示、搜索、融合、推理等数据知识化组织和智能应用,是支撑装备能力画像、发展态势分析、装备故障诊断与健康状态管理等武器装备智能化作战应用的重难点技术之一。

目前,基于装备知识图谱的研究越来越受学者重视。段文昱等在分析武器装备领域文本数据特征的基础上,提出基于预训练模型与规则知识结合的武器装备实体及关系抽取方法,通过强领域性规则知识降低了传统流水线模式带来的累积误差问题。薛坤面向军事领域,采用K最近邻算法构建了军事实体库,结合双向长短期记忆网络(Bi-directional long short-term memory,BiLSTM)和条件随机场(conditional random field,CRF)算法以及分段卷积神经网络(piecewise convolutional neural network,PCNN)模型完成知识抽取任务,最终构建了包含四十多万条知识的军事领域知识图谱。谢腾提出了融合多种外部特征的BERT知识抽取模型,并通过实验验证了模型在信息装备领域具有较强的识别性能。慈颖等结合航天装备在役考核的实际应用,提出一种基于航天装备数据的知识图谱体系构建技术,自主设计研制了航天装备在役考核综合评估系统。王震南构建了登陆作战场景中涉及的军事装备知识图谱,设计并实现了一套包含辅助词典模块、实体与属性抽取模块、依存句法分析模块、简单问题问答模块、作战事件问答模块的领域知识问答系统。胡伟涛构建了装备静值属性知识图谱和装备运用属性知识事理图谱,提出了基于图谱网络结构和图谱网络路径能力的网络关键节点识别手段,并以巡逻反潜装备进行了示例分析。马玉凤等对军事领域知识图谱困境进行了总结,归纳了前人对军事领域知识图谱做出的构建尝试,根据知识图谱领域最新提出的技术为各个构建阶段提供了新的思路。张玉鹏为了降低远程监督带来的噪声问题,采用基于句子注意力机制的分段卷积神经网络模型进行关系抽取从而获得了装备实体三元组,构建出装备知识图谱并实现了军事知识图谱平台原型系统。

上述研究为本文知识图谱的构建提供了重要的参考和依据。然而,预警装备领域知识图谱构建工作还存在不少难题,如缺乏面向实际应用场景的细粒度开源数据集,数据组织呈现碎片化分布、文本非结构化等典型特征,预警装备数据专业性强、专业术语嵌套,实体边界模糊,结构和关系类型复杂、实体关系样本分布不均匀,导致知识抽取准确性难度高。针对上述问题,本文提出了一种基于深度学习的预警装备知识图谱构建方法。首先,在模式层构建出预警装备知识本体库与知识词典,以驱动分词构建出预警装备知识数据集,然后,通过对预警装备数据的深入挖掘,重点对命名实体和关系抽取2个核心环节的模型性能进行研究,以提取出预警装备知识三元组并实现图谱可视化。

1 预警装备领域知识本体及数据集构建

知识图谱的构建方法可以分为自上而下、自下而上和混合3种方式。根据预警装备的数据特征及知识图谱应用需求,本文采用一种混合方法构建知识图谱。首先,构建预警装备知识图谱模式层,结合专家知识构建本体,定义概念类并明确概念类之间的关系;其次,对文本资料进行数据预处理,构造预警装备术语词典以驱动分词从而构建并标注出数据集;然后,随着知识抽取的进展,根据数据层获得的知识概念来更新模式层,从而完善模式层的知识概念组织结构;最后,提取出预警装备知识三元组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值