Spring AI MCP 架构详解

Spring AI MCP 架构详解

1.什么是MCP?

MCP 是一种开放协议,它对应用程序向大语言模型(LLMs)提供上下文信息的方式进行了标准化。可以把 MCP 想象成人工智能应用程序的 USB-C 接口。就像 USB-C 为将设备连接到各种外围设备和配件提供了一种标准化方式一样,MCP 将人工智能模型连接到不同的数据源和工具提供了一种标准化方式。

MCP 可帮助你在 LLM 之上构建智能体和复杂的工作流。LLM 通常需要与数据和工具集成,而 MCP 可提供:

  1. 在 LLM 提供商和供应商之间切换的灵活性。
  2. 不断扩充的预构建集成列表,你的大语言模型可以直接接入其中;
  3. 保护基础设施内数据的最佳实践

MCP协议官网 https://modelcontextprotocol.io/

2.整体架构

MCP 的核心是客户端-服务器架构,其中主机应用程序可以连接到多个服务器:

在这里插入图片描述

MCP Hosts:想要通过 MCP 访问数据的程序(例如 Claude Desktop、IDE 或 AI 工具)

**MCP Clients:**与服务器保持 1:1 连接的协议客户端

**MCP Servers:**每个轻量级程序都通过标准化模型上下文协议公开提供特定功能

**Local Data Sources:**MCP 服务器可以安全访问您的计算机的文件、数据库和服务

**Remote Services:**MCP 服务器可以连接到互联网上的外部系统(例如通过 API)

Spring AI MCP

MCP Java SDK 提供了模型上下文协议的 Java 实现,支持通过同步和异步通信模式与 AI 模型和工具进行标准化交互。

Spring AI MCP 通过 Spring Boot 集成扩展了 MCP Java SDK,提供客户端和服务器启动器。使用 Spring Initializer 通过 MCP 支持引导您的 AI 应用程序。

MCP Java SDK Architecture

Java MCP 实现遵循三层架构:

在这里插入图片描述

客户端 / 服务器层:McpClient 处理客户端操作,而 McpServer 管理服务器端的协议操作。两者都使用 McpSession 来进行通信管理。

会话层(McpSession):通过 DefaultMcpSession 实现来管理通信模式和状态。

传输层(McpTransport):处理 JSON-RPC 消息的序列化和反序列化,支持多种传输实现方式。

MCP Client

在这里插入图片描述

MCP 客户端是模型上下文协议 (MCP) 架构中的关键组件,负责建立和管理与 MCP 服务器的连接。它实现了协议的客户端:

  1. 协议版本协商,确保与服务器的兼容性

  2. 能力协商以确定可用功能

  3. 消息传输和 JSON-RPC 通信

  4. 工具发现和执行

  5. 资源访问和管理

  6. Prompt系统交互

  7. 可选特性:Roots管理,采样支持

  8. 同步和异步操作

  9. 传输可选项:

         基于标准输入输出(Stdio)的传输,用于基于进程的通信
    
         基于 Java HttpClient 的 SSE 客户端传输
    
         反应式 HTTP 流的 WebFlux SSE 客户端传输
    

MCP Server

在这里插入图片描述

MCP 服务端是模型上下文协议 (MCP) 架构中的基础组件,为客户端提供工具、资源和功能。它实现协议的服务端,负责:

  1. 服务端协议操作实现
  • 工具暴露与发现
  • 基于统一资源标识符(URI)访问的资源管理
  • 提示词模板的提供与处理
  • 与客户端进行能力协商
  • 结构化日志记录与通知
  1. 客户端并发连接管理
  2. 同步和异步 API 支持
  3. 传输实现方式:
  • 基于标准输入输出(Stdio)的传输,用于基于进程的通信
  • 基于 Servlet 的服务器发送事件(SSE)服务器传输
  • 响应式 HTTP 流的基于 WebFlux 的服务器发送事件(SSE)服务器传输
  • Servlet 的 HTTP 流基于 WebMVC 的服务器发送事件(SSE)服务器传输

Spring AI MCP 集成

Spring AI 通过以下 Spring Boot Starters提供 MCP 集成:

Client Starters

  • spring-ai-starter-mcp-client - 核心starter,提供基于标准输入输出(STDIO)和基于HTTP的服务器发送事件(SSE)
  • spring-ai-starter-mcp-client-webflux - 基于 WebFlux 的服务器发送事件(SSE)传输实现

Server Starters

  • spring-ai-starter-mcp-server - 核心server,基于标准输入输出(STDIO)传输支持
  • spring-ai-starter-mcp-server-webmvc - 基于Spring MVC的 SSE 传输实现
  • spring-ai-starter-mcp-server-webflux - 基于WebFlux SSE 传输实现
<think>好的,用户想了解Spring AIMCP实例。首先,我需要确认MCP在这里具体指什么。在Spring生态中,MCP可能有不同的含义,比如Model-Controller-Presenter,或者是某个特定项目的缩写。不过结合Spring AI来看,可能是指某种与AI模型相关的组件或模式。 接下来,我需要回忆Spring AI的相关内容。Spring AI是一个旨在简化在Spring应用中集成人工智能功能的项目。它可能提供与各种AI模型(如OpenAI、Hugging Face等)交互的抽象层,类似于Spring Data对数据库的抽象。 用户提到的“MCP实例”可能是指某个具体的设计模式或架构组件。例如,Model-Controller-Presenter(MCP)模式,这可能是一种变体的MVC模式,但需要验证是否存在这样的命名。或者,MCP可能指代某个特定的模块或项目名称,比如Model Conversion Pipeline(模型转换管道)或其他缩写。 需要进一步查阅Spring AI的文档或相关资料,确认MCP的具体含义。假设暂时无法访问外部资料,我需要基于已有知识进行推断。可能的推测是,MCP可能是指“Model-Controller-Presenter”模式在Spring AI中的应用,或者是指管理AI模型配置和交互的某个组件。 在回答时,应分步骤解释:首先介绍Spring AI的整体概念,然后逐步引入可能的MCP实例解释,包括其作用、结构和使用场景。同时,提醒用户如果MCP指代特定内容,可能需要更具体的上下文来准确回答。 需要确保回答结构清晰,符合用户要求的中文回答,并且正确使用LaTeX格式标注数学表达式(虽然当前问题不涉及数学,但需注意其他部分)。同时,避免使用Markdown,保持自然的口语化表达。</think>关于Spring AI中的MCP实例,我们需要分步骤理解: 1. **Spring AI基础概念** Spring AISpring生态系统中的新兴项目,旨在为AI模型集成提供标准化接口。其核心思想类似于Spring Data对数据库的抽象,开发者可以通过统一API访问不同AI服务(如OpenAI、Hugging Face等)。 2. **MCP的可能含义分析** - **假设1:Model-Controller-Presenter架构** 在传统Spring MVC模式基础上,可能扩展出针对AI业务场景的三层架构: $$ \text{AI模型层(Model)} \rightarrow \text{逻辑控制层(Controller)} \rightarrow \text{表现适配层(Presenter)} $$ 这种模式适用于需要将原始AI输出转化为业务友好格式的场景 - **假设2:Model Conversion Pipeline** 可能指AI模型转换流水线,例如: ```text 输入预处理 → 模型推理 → 输出后处理 ``` 通过$PipelineBuilder$类实现处理链配置 3. **典型应用场景** - 对话系统实现: ```java @AiController public class ChatController { @PostMapping("/chat") public String handlePrompt(@RequestParam String input) { return aiClient.generate(input); } } ``` - 向量数据库集成:使用$VectorStoreTemplate$进行语义搜索 4. **配置要点** - 通过`application.yml`配置模型参数: ```yaml spring.ai.openai.api-key: ${API_KEY} spring.ai.openai.temperature: 0.7 ``` - 使用$@EnableAiClients$注解激活AI功能 建议在实际开发中结合具体业务需求: 1. 定义清晰的AI服务边界 2. 使用重试机制处理$f(x) = \text{API调用不稳定问题}$ 3. 通过Adapter模式实现多模型热切换 如果需要更精确的"MCP实例"解释,建议提供上下文或查看官方文档中的具体模块定义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

laopeng301

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值