20180302 碰撞的小球

问题描述

  数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
  当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
  当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
  现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。

提示

  因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
  同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。

输入格式

  输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
  第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。

输出格式

  输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。

样例输入

3 10 5
4 6 8

样例输出

7 9 9

样例说明

  初始时,三个小球的位置分别为4, 6, 8。

  一秒后,三个小球的位置分别为5, 7, 9。

  两秒后,第三个小球碰到墙壁,速度反向,三个小球位置分别为6, 8, 10。

  三秒后,第二个小球与第三个小球在位置9发生碰撞,速度反向(注意碰撞位置不一定为偶数),三个小球位置分别为7, 9, 9。

  四秒后,第一个小球与第二个小球在位置8发生碰撞,速度反向,第三个小球碰到墙壁,速度反向,三个小球位置分别为8, 8, 10。

  五秒后,三个小球的位置分别为7, 9, 9。

样例输入

10 22 30
14 12 16 6 10 2 8 20 18 4

样例输出

6 6 8 2 4 0 4 12 10 2

数据规模和约定

  对于所有评测用例,1 ≤ n ≤ 100,1 ≤ t ≤ 100,2 ≤ L ≤ 1000,0 < ai < L。L为偶数。
  保证所有小球的初始位置互不相同且均为偶数。

解析

#include <iostream>
using namespace std;
int main()
{
	int n,l,t,a[1005],b[1005]={0},d[1005]={0}; //d=0向右,d=1向左 
	cin>>n>>l>>t;
	for(int i=0;i<n;i++) 
	{
		cin>>a[i];
		b[a[i]]=1; 
	}
	for(int i=0;i<t;i++) //t秒 
	{
		for(int j=0;j<n;j++) //小球进行遍历 
		{
			if(a[j]==0) d[j]=0;
			if(a[j]==l) d[j]=1;
		    	if(b[a[j]]==2) //两小球位置重合(碰撞) 
		    	{
		    		if(d[j]) d[j]=0;
		    		else d[j]=1;
				}
			if((b[a[j]+1]==0)&&(d[j]==0)) 
			{
				b[a[j]]=0;
				b[a[j]+1]+=1;
				a[j]+=1;
			}
			else if((b[a[j]+1]==1)&&(d[j]==0))
			{
				b[a[j]]=0;
				b[a[j]+1]+=1;
				a[j]+=1;
				d[j]=1;
			}
			else if((b[a[j]-1]==0)&&(d[j]==1))
			{
				b[a[j]]=0;
				b[a[j]-1]+=1;
				a[j]-=1;
			}
			else if((b[a[j]-1]==1)&&(d[j]==1))
			{
				b[a[j]]=0;
				b[a[j]-1]+=1;
				a[j]-=1;
				d[j]=0;
			}
			
		}
	 }

	  for(int j=0;j<n;j++)
	 	{
	 		cout<<a[j];
	 		if(j!=n-1) cout<<" ";
		 }
	return 0;
 } 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值