一些对于模型的评判标准(R方与AUC)

本文详细讲解了R²(决定系数)在衡量线性模型拟合优度的方法,以及AUC(曲线下面积)在评估二分类模型ROC曲线中的重要性。通过实例和概念对比,阐述了两者在不同场景下的应用和意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R^{2}

我们在做逻辑回归或是其他线性模型的时候,经常会遇到一个模型衡量指标叫做R^{2} ,网上很多一个普遍的解释是:R^{2}表达了2个变量间关系的解释程度百分比程度 / 你的你和曲线对于模型variance的减少百分比。

那么R^{2}到底是什么呢,首先计算样本的总平方和TSS(Total Sum of Squares):

然后计算残差平方和RSS(Residual Sum of Squares):

那么

R^{2}越大,拟合效果越好。最优值为1。

若模型预测为随机值,R2有可能为负,若预测值恒为样本期望,R2为0 。

 

AUC(Area under curve)

AUC是Area under curve的首字母缩写。Area under curve是什么呢,从字面理解,就是一条曲线下面区域的面积。所以我们要先来弄清楚这条曲是什么。这曲有名字,叫ROC曲线。ROC曲线是统计里面的概率,最早由电子工程师在二战中提出来。

首先我们看一个图

针对于二分类模型的判断结果,我们一般都四种情况。

1.预测为正,实际为正,则为TP(True Positive)

2.预测为正,实际为负,则为FP(False Positive)

3.预测为负,实际为正,则为FN(False Negtive)

4.预测为负,实际为负,则为TN(True Negtive)

我们所希望的是TP与TN尽量多,FP与FN尽量少。

所以我们一般用的是准确率:(TP+TN) / (TP+TN+FN+FP)。

可是就算是准确率一样的模型,效果也会有不一样。比如有的FP多一点,有的FN多一点。具体哪个比较重要,要看实际情况。比如说去医院判断是否有癌症,初诊肯定是宁肯错杀一千,也不放过一个。FN可以接受,FP是最好一个都没有。

所以我们还有几种公式,

精确率是相对于预测结果而言的,它表示的是预测为正的样本中有多少是对的;那么预测为正的样本就有两种可能来源,一种是把正的预测为正的,这类有TruePositive个, 另外一种是把负的错判为正的,这类有FalsePositive个,因此精确率即:TP/(TP+FP)。要求FP尽量少。

召回率是相对于样本而言的,即样本中有多少正样本被预测正确了,这样的有TP个,所有的正样本有两个去向,一个是被判为正的,另一个是错判为负的,因此总共有TP+FN个,所以,召回率 R= TP / (TP+FN)。要求FN尽量少。

然后我们思考一下如何去整体的评判一个二分类模型,把这些情况都综合起来。便有了ROC曲线与AUC。

首先介绍一下真阳性率TPR=TP/(TP+FN)其实就是召回率。这个值越高越好,同时也代表模型的筛查标准更宽松。

然后是假阳性率FPR=FP/(FP+TN),代表所有的负样本中有多少被查错了,被分类成了正。这个值越小越好,同时这个代表模型的筛查标准越严格。

这两个值对于一个模型互相相关的,我们可以画出下面的图即ROC曲线:

越靠左下越宽松,越靠右上越严格。而且函数一定经过(0,0)与(1,1)两点。我们所希望的是TPR高FPR低。那么很显然,这个函数与下面和右面的坐标轴形成的形状面积越大越好。这个就叫做AUC。

AUC的计算方法同时考虑了分类器对于正例和负例的分类能力,在样本不平衡的情况下,依然能够对分类器作出合理的评价。
例如在反欺诈场景,设欺诈类样本为正例,正例占比很少(假设0.1%),如果使用准确率评估,把所有的样本预测为负例,便可以获得99.9%的准确率。 
但是如果使用AUC,把所有样本预测为负例,TPRate和FPRate同时为0(没有Positive),与(0.0)(1,1)连接,得出AUC仅为0.5,成功规避了样本不均匀带来的问题。
 

评判一个机器学习模型好坏的标准和各项指标有很多,以下是一些常见的指标: 1. 准确率(Accuracy):分类正确的样本数占总样本数的比例,适用于二分类和多分类问题。 2. 精确率(Precision):预测为正例的样本中,实际为正例的样本数占所有预测为正例的样本数的比例,适用于需要准确预测正例的问题。 3. 召回率(Recall):实际为正例的样本中,被预测为正例的样本数占所有实际为正例的样本数的比例,适用于需要尽可能找出所有正例的问题。 4. F1-score:综合考虑了精确率和召回率,是精确率和召回率的调和平均数。 5. ROC曲线:以假正例率(false positive rate,FPR)为横坐标,真正例率(true positive rate,TPR)为纵坐标,绘制出的曲线曲线下面积AUC(Area Under Curve)越大,模型性能越好。 6. 混淆矩阵(Confusion Matrix):将实际结果和预测结果进行分类统计的矩阵。可以通过混淆矩阵计算出准确率、精确率、召回率等指标。 7. 均误差(Mean Squared Error,MSE):回归问题中,预测值实际值之间差的平方和的均值。 8. 均根误差(Root Mean Squared Error,RMSE):回归问题中,均误差的平根。 9. 平均绝对误差(Mean Absolute Error,MAE):回归问题中,预测值实际值之间差的绝对值的均值。 10. R^2(决定系数):回归问题中,模型的可决系数,表示模型对数据的拟合程度。R^2越接近1,模型的拟合程度越好。 不同的问题和场景需要使用不同的指标来评估模型的好坏。需要根据具体的需求和情况来选择合适的评估指标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值