描述
X星球的一批考古机器人正在一片废墟上考古。 该区域的地面坚硬如石、平整如镜。 管理人员为方便,建立了标准的直角坐标系。
每个机器人都各有特长、身怀绝技。它们感兴趣的内容也不相同。 经过各种测量,每个机器人都会报告一个或多个矩形区域,作为优先考古的区域。
矩形的表示格式为(x1,y1,x2,y2),代表矩形的两个对角点坐标。
为了醒目,总部要求对所有机器人选中的矩形区域涂黄色油漆。 小明并不需要当油漆工,只是他需要计算一下,一共要耗费多少油漆。
其实这也不难,只要算出所有矩形覆盖的区域一共有多大面积就可以了。 注意,各个矩形间可能重叠。
本题的输入为若干矩形,要求输出其覆盖的总面积。
输入格式:
第一行,一个整数n,表示有多少个矩形(1<=n<10000) 接下来的n行,每行有4个整数x1 y1 x2
y2,空格分开,表示矩形的两个对角顶点坐标。 (0<= x1,y1,x2,y2 <=10000)
输出格式:
一行一个整数,表示矩形覆盖的总面积。
输入:
3
1 5 10 10
3 1 20 20
2 7 15 17
输出:
340
输入:
3
5 2 10 6
2 7 12 10
8 1 15 15
输出:
128
资源约定: 峰值内存消耗(含虚拟机) < 256M CPU消耗 < 2000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意: main函数需要返回0; 只使用ANSI C/ANSI C++ 标准; 不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include 不能通过工程设置而省略常用头文件。提交程序时,注意选择所期望的语言类型和编译器类型。
思路
算是扫描线的模板题吧,不会的可以看这里:POJ1151 Atlantis(线段树,扫描线,离散化,矩形面积并)
代码
#include <cstdio>
#include <cstring>
#include <cctype>
#include <stdlib.h>
#include <string>
#include <map>
#include <iostream>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <vector>
#include <algorithm>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
typedef long long ll;
const int N=10000+20;
struct Seg
{
int l,r,h;
int f;
Seg() {}
Seg(int a,int b,int c,int d):l(a),r(b),h(c),f(d) {}
} e[N];
bool cmp(Seg a,Seg b)
{
return a.h<b.h;
}
struct node
{
int len;
int cnt;
} t[N<<2];
int X[N];
void pushdown(int l,int r,int rt)
{
if(t[rt].cnt)
t[rt].len=X[r+1]-X[l];
else if(l==r)
t[rt].len=0;
else
t[rt].len=t[rt<<1].len+t[rt<<1|1].len;
}
void update(int L,int R,int l,int r,int rt,int val)
{
if(L<=l&&r<=R)
{
t[rt].cnt+=val;
pushdown(l,r,rt);
return;
}
int m=(l+r)>>1;
if(L<=m) update(L,R,lson,val);
if(R>m) update(L,R,rson,val);
pushdown(l,r,rt);
}
int main()
{
int n;
int a,b,c,d;
scanf("%d",&n);
mem(t,0);
int num=0;
int ans=0;
for(int i=0; i<n; i++)
{
scanf("%d%d%d%d",&a,&b,&c,&d);
X[num]=a;
e[num++]=Seg(a,c,b,1);
X[num]=c;
e[num++]=Seg(a,c,d,-1);
}
sort(X,X+num);
sort(e,e+num,cmp);
int m=unique(X,X+num)-X;
for(int i=0; i<num; i++)
{
int l=lower_bound(X,X+m,e[i].l)-X;
int r=lower_bound(X,X+m,e[i].r)-X-1;
update(l,r,0,m,1,e[i].f);
ans+=t[1].len*(e[i+1].h-e[i].h);
}
printf("%d\n",ans);
return 0;
}