ML
吕子明爱读书
这个作者很懒,什么都没留下…
展开
-
机器学习之数学基础 一 .导数
简单的说,导数是曲线的斜率,是曲线变化快慢的反应.2阶导数是斜率变化快慢的反应,反应曲线的凸凹性例如:加速度的方向总是指向轨迹曲线凹的一侧. 导数(Derivative)是微积分学中重要的基础概念.一个函数在某一点的导数描述了这个函数在这一点附近的变化率.导数的本质是通过极限的概念对函数进行局部的线性逼近.当函数f的自变量在一点x0上产生一个增量h时,函数输出值的增量与自变量增量h...原创 2018-12-16 18:20:47 · 740 阅读 · 0 评论 -
机器学习之数学基础 二 .泰勒级数
泰勒级数(Taylor series)用无限项连加式--级数来表示一个函数,这些相加的项由函数在某一点的导数求得. 函数在自变量0 的导数求得的泰勒级数又加做麦克劳林级数.实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可...原创 2018-12-16 21:27:47 · 1916 阅读 · 0 评论