统计学从挂科到满分【笔记2】

第三章 统计运算基础

1. 平均数

(1)算术平均数sum/nsum/n
(2)加权平均数
i=1nxiwii=1nwiw/\frac{\sum^{n}_{i=1}x_iw_i}{\sum^n_{i=1}w_i}(w为频数/率)

(3)调和平均数
H=n1xH=\frac{n}{\sum\frac{1}{x}}

在某些情形下调和平均数与算术平均数等价。

例1:某人在100元/股,200元/股,300元/股三个价位各买进股票60000元,问所持股票的均价多少?

解:
H==60000360000100+60000200+60000300=31100+1200+1300H=\frac{总金额}{总股数}=\frac{60000*3}{\frac{60000}{100}+\frac{60000}{200}+\frac{60000}{300}}=\frac{3}{\frac{1}{100}+\frac{1}{200}+\frac{1}{300}}

例2:设某行业150个企业的有关产值和利润如下,计算第一二季度的平均产值利润率。
(产值利润率=实际利润 / 实际产值 * 100%)

在这里插入图片描述
解:
实际产值*利润率=实际利润
总利润率=总利润 / 总产值
对于第一季度:
已知实际产值,未知实际利润
对于第二季度:
已知实际利润,未知实际产值
在这里插入图片描述
(4)几何平均数
G=inXinG=\sqrt[n]{\prod_{i}^nX_i}

用于计算平均比率或者平均发展速度。

例1:某人向银行贷款,第一季度利率5%,第二季度利率5.2%,第三季度利率4.6%,第四季度的利率是5.8%,问平均每季度的利率是多少?

易错写法:
在这里插入图片描述
在这里插入图片描述
例2:设某生产流水线由12道工序组成,据统计有3道工序的 不合格率为2%,有4道工序的不合格率为4%,有5道 工序的不合格率为5%,则平均的不合格率为多少?

在这里插入图片描述
(5)幂平均数
在这里插入图片描述
通过幂平均数,可以化成其他的平均数

(6)不同平均数的特点:

  • 算术平均:取长补短
  • 几何平均和调和平均:劳有所得
  • 幂平均:惩罚坏的,激励好的

2. 位置代表数

(1)中位数:按大小排列之后居中的数,如果有两个则取平均。
(2)分位数:比如四等位数
(3)众数:出现次数最多的数,可以出现多个众数

3. 分布偏态与平均数和位置代表数的关系

MoM_o是众数,MeM_e是中位数
在这里插入图片描述
在这里插入图片描述
例题:一组技术人员月薪的众数为7000元,算术平均 数为10000元,适度偏斜时中位数近似值是多少?
在这里插入图片描述

4. 离散指标

离散指标反映的是数值的差异程度

4.1 全距(极差)

R=Max-Min

4.2 内距(四分位差)

在这里插入图片描述

4.3 异众比率

非众数组频数占总频数之比:
Vr=fifofifoV_r=\frac{\sum f_i-f_o}{\sum f_i}(f_o是众数频数)

4.4 平均差

全称:平均绝对偏差
Mad=xixˉnMad=\frac{\sum |x_i-\bar x|}{n}

性能没有标准差好

4.5 方差与标准差

σ2=(xixˉ)2n\sigma ^2=\frac{\sum (x_i-\bar x)^2}{n}
σ=(xixˉ)2n\sigma =\sqrt \frac{\sum (x_i-\bar x)^2}{n}
方差简易公式:
S2=x2ˉxˉ2S^2=\bar{x^2}-\bar x^2

4.6 变异系数

为什么要引入变异系数?
当两个问题的量纲不一致的时候,难以比较透明的离散程度。

比如:已知某班所有学生的身高和体重,哪个离散程度较小?

为了消除变量水平和计量单位的影响,引入变异系数:
标准差系数,极差系数,平均差系数

标准差系数:Vs=sxˉV_s=\frac{s}{\bar x}

指标除以平均值就是系数。

对于体重和身高的离散程度比较问题解答:
若已知:
σh=13.64cmxˉh=167.9cmσw=8.94kgxˉw=65.1kg\sigma_h=13.64cm \\ \bar x_h=167.9cm \\ \sigma_w=8.94kg\\\bar x_w=65.1kg

在这里插入图片描述
所以体重的离散程度更大

4.7 是非标志

对于一个二分问题而言,我们对于问题的对错的概率引入“成数”这一概念。

是:P
否:Q

例子: 某批产品共500件,其中合格品480件,不 合格品20件,计算成数?

解:
P=480/500=96%, Q=20/500=4%

引入成数之后,可以利用成数化简标准差公式:
在这里插入图片描述
σ=PQ\sigma=\sqrt{PQ}

注意,只对于二分问题成立。

4.8 偏度系数

什么是偏度?偏度系数用于衡量什么?
偏度用于描述分布形状,对于一个分布是右偏还是左偏,偏离多少,我们需要一个量化标准。
正偏
在这里插入图片描述
负偏
在这里插入图片描述
计算角度1:基于算术平均数,众数/中位数
Sk=xˉmosS_k=\frac{\bar x-m_o}{s}

s 是标准差

变动范围在(-3,3)之间
Sk<0S_k<0表示负偏

计算角度2:基于四分位数
在这里插入图片描述
Sk=Ql+Qu2meQuQlS_k=\frac{Q_l+Q_u-2m_e}{Q_u-Q_l}

mem_e是中位数

系数变动范围在(-1,1)
Sk<0S_k<0表示负偏

计算角度3:动差法
中心动差(c阶动差):
mc=(xixˉ)c/nm_c=\sum (x_i-\bar x)^c/n

Sk=m3S3S_k=\frac{m_3}{S^3}

4.9 峰度系数

引入峰度也是为了描述分布的陡峭性。
在这里插入图片描述
计算公式
K=(xixˉ)4/n((xixˉ)2/n)2=m4s4K=\frac{\sum (x_i-\bar x)^4/n}{(\sum (x_i-\bar x)^2/n)^2}=\frac{m_4}{s^4}
当K=3,正态分布
当K=1.8,均匀分布
例题:动差法求偏度系数和峰度系数
在这里插入图片描述
在这里插入图片描述
解:
在这里插入图片描述

©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师: 上身试试 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值