基于matlab点云工具箱对点云进行处理二:对点云进行欧式聚类,获得聚类后点云簇的外接矩形
步骤:
- 读取velodyne数据包pcap文件内的点云数据
- 使用pcdownsample函数对点云数据进行体素化采样,减少点云数量
- 使用find函数对点云进行筛选
- 使用pcdnoise去除点云内的噪声
- 使用pcsegdist进行欧式聚类
- 使用自定义函数getBoundary获得外接矩形,函数具体定义见附件
相关程序点这里https://download.csdn.net/download/rmrgjxeivt/59555459
存在的问题:
大型物体(例如花坛、弯曲的道路护栏等)容易被识别成为一个巨型矩形框。属于严重的错误识别。
基于matlab点云工具箱对点云进行处理一:去除地面,保留剩下的点https://blog.csdn.net/rmrgjxeivt/article/details/121830344
基于matlab点云工具箱对点云进行处理二:对点云进行欧式聚类,获得聚类后点云簇的外接矩形https://blog.csdn.net/rmrgjxeivt/article/details/121830919
基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形https://blog.csdn.net/rmrgjxeivt/article/details/121831507
基于matlab点云工具箱对点云进行处理四:对点云进行欧式聚类,并获得包围点云簇的外接凹多边形https://blog.csdn.net/rmrgjxeivt/article/details/121831934
% 读取激光的PCAP文件
% 筛选感兴趣区域
% 播放筛选后的点云
veloReader = velodyneFileReader('2021-11-23-12-49-43_Velodyne-HDL-32-Data.pcap','VLP32c');
%% 设置感兴趣区域
vehPara.length = 5.5;
vehPara.width = 2.2;
vehPara.d = 2.3; % 轴距
vehPara.rearOverhang = 1; % 前悬
vehPara.rearOverhang = 1; % 后悬
vehPara.CG2Rear = 1.45; % 质心到后轴
insRegion = [-20 50 -10 10 0 2]; % 感兴趣区域[minX maxX minY maxY]
groundRegion = [-1, 0.2]; % 地面区域,z轴方向
xLimits = [insRegion(1), insRegion(2)];
yLimits = [insRegion(3), insRegion(4)];
zLimits = [insRegion(5), insRegion(6)]; % 原点在后轴中心,因此此处相对于轮芯高度
player = pcplayer(xLimits,yLimits,zLimits);
xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');
veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);
disp(['frame数量',num2str(veloReader.NumberOfFrames)])
pause(2)
frameID = 1000;
while(hasFrame(veloReader) && player.isOpen() && (veloReader.CurrentTime < veloReader.EndTime))
ptCloudObj = readFrame(veloReader,frameID);
frameID
tic
lidarLo = [3.5 0 1.1 0 0 0];
% 取出XYZ
xTemp = ptCloudObj.Location(:,:,2)+lidarLo(1);
yTemp = -ptCloudObj.Location(:,:,1)+lidarLo(2);
zTemp = ptCloudObj.Location(:,:,3)+lidarLo(3);
pc = [xTemp(:) yTemp(:) zTemp(:) single(ptCloudObj.Intensity(:))];
% max(pc(:,1))
% min(pc(:,1))
% max(pc(:,2))
% 对地面的点进行范围筛选
zMin = groundRegion(1);
zMax = groundRegion(2);
pcObj = pointCloud(pc(:,1:3));
pcObj.Intensity = pc(:,4);
pcOutNum = 30000; % 输出的点云数量
objPointVeh = zeros(pcOutNum,4,'single');
objPointVeh(:,1) = single(insRegion(2));
objPointVeh(:,2) = single(insRegion(4));
objPointVeh(:,3) = single(insRegion(6));
objPointVeh(:,4) = single(0);
% tic
%% 降低点云密度 coder会报错
gridStep = 0.03;
pcObj_downSample = pcdownsample(pcObj,'gridAverage',gridStep); % 降低点云密度
% maxNumPoints = 6;
% pcObj_downSample = pcdownsample(pcObj,'nonuniformGridSample',maxNumPoints);
% percentage = 0.3;
% pcObj_downSample = pcdownsample(pcObj,'random',percentage);
%% 筛选感兴趣区域(单位米),并排除车身内部的点云
xLimits = [insRegion(1), insRegion(2)];
yLimits = [insRegion(3), insRegion(4)];
zLimits = [insRegion(5), insRegion(6)]; % 原点在后轴中心,因此此处相对于轮芯高度
indices = find((pcObj_downSample.Location(:, 2) >= yLimits(1) ...
& pcObj_downSample.Location(:,2) <= yLimits(2) ...
& pcObj_downSample.Location(:,1) >= xLimits(1) ...
& pcObj_downSample.Location(:,1) <= xLimits(2) ...
& pcObj_downSample.Location(:,3) <= zLimits(2) ...
& pcObj_downSample.Location(:,3) >= zLimits(1) ...
& ~(pcObj_downSample.Location(:,1)<(vehPara.length-vehPara.rearOverhang) ...
& pcObj_downSample.Location(:,1)>(-vehPara.rearOverhang) ...
& pcObj_downSample.Location(:,2)<vehPara.width/2 ...
& pcObj_downSample.Location(:,2)>-vehPara.width/2)));% 设置感兴趣的点云区域
if ~isempty(indices)
pcObj_downSample = select(pcObj_downSample,indices);
%% 去除噪声
[pcObj_downSample,inlierIndices,~] = pcdenoise(pcObj_downSample);
pcID_noNoise = 1:1:pcObj_downSample.Count;
if ~isempty(inlierIndices)
outlierIndices = [];
if ~isempty(outlierIndices) % 非空才输出
pcRemainObj = select(pcObj_downSample,pcID_out);
else
pcRemainObj = pcObj_downSample;
end
else
pcRemainObj = pcObj_downSample;
end
cowPCRemain = size(pcRemainObj.Location)*[1;0];
if cowPCRemain>pcOutNum
cowPCRemain = pcOutNum;
end
objPointVeh(1:cowPCRemain,:) = [pcRemainObj.Location pcRemainObj.Intensity];
% pcRemainObj = pcObj;
% cowPCRemain = size(pcRemainObj.Location)*[1;0];
% objPointVeh(1:cowPCRemain,:) = pcRemainObj.Location;
end
% end
%% 欧式聚类
% 最小聚类欧式距离
minDist = 0.7;
% 执行欧式聚类分割
[labels,numClusters] = pcsegdist(pcRemainObj,minDist);
% 显示分割结果
hsvColorMap = hsv(numClusters);
hsvColorMap_H = hsvColorMap(:,1);
hsvColorMap_S = hsvColorMap(:,2);
hsvColorMap_V = hsvColorMap(:,3);
% view(player,pcRemainObj.Location,[hsvColorMap_H(labels) hsvColorMap_S(labels) hsvColorMap_V(labels)]);
% pcshow(pcRemainObj.Location,labels);
% colormap(hsv(numClusters));
% 遍历所有聚类结果
figure(2);
% subplot(2,1,2)
clf
axis([insRegion(1) insRegion(2) insRegion(3) insRegion(4)])
title('欧式聚类分割');
xlabel('X(m)');
ylabel('Y(m)');
zlabel('Z(m)');
hold on;
for i = 1:1:numClusters
pcClusterObjTemp = select(pcRemainObj,find(labels == i));
pbar = getBoundary(pcClusterObjTemp.Location);
plot([pbar(:,1); pbar(1,1)],[pbar(:,2); pbar(1,2)],'r')
end
hold off
objVehPoint = objPointVeh;
%%
pcObjOut = pointCloud(objVehPoint(:,1:3));
pcObjOut.Intensity = objVehPoint(:,4);
frameID = frameID+1;
toc
view(player,pcObjOut);
pause(0.02);
end
% end
function [pbar] = getBoundary(pcCluster)
if length(pcCluster(:,1))>=3
ind = convhull(double(pcCluster(:,1)),double(pcCluster(:,2)));
pcNum = length(ind);
hull = pcCluster(ind,1:2); %随机点凸包
area = inf;
for i = 2:pcNum
p1 = hull(i-1,:); %凸包上两个点
p2 = hull(i,:);
k1 = (p1(2)-p2(2))/(p1(1)-p2(1)); %连接两点的直线,作为矩形的一条边
b1 = p1(2)-k1*p1(1);
d = abs(hull(:,1)*k1-hull(:,2)+b1)/sqrt(k1^2+1); %所有凸包上的点到k1,b1直线的距离
[h, ind] = max(d); %得到距离最大的点距离,即为高,同时得到该点坐标
b2 = hull(ind,2)-k1*hull(ind,1); %相对k1,b1直线相对的另一条平行边k1,b2;
k2 = -1/k1; %以求得的直线的垂线斜率
b = hull(:,2)-k2*hull(:,1); %过凸包所有点构成的k2,b直线系
x1 = -(b1-b)/(k1-k2); %凸包上所有点在已求得的第一条边的投影
y1 = -(-b*k1+b1*k2)/(k1-k2);
x2 = -(b2-b)/(k1-k2); %凸包上所有点在已求得的第二条边的投影
y2 = -(-b*k1+b2*k2)/(k1-k2);
[~, indmax1] = max(x1); %投影在第一条边上x方向最大与最小值
[~, indmin1] = min(x1);
[~, indmax2] = max(x2); %投影在第二条边上x方向最大与最小值
[~, indmin2] = min(x2);
w = sqrt((x1(indmax1)-x1(indmin1))^2+(y1(indmax1)-y1(indmin1))^2); %矩形的宽
if area >= h*w %使面积最小
area = h*w;
pbar = [x1(indmax1) y1(indmax1); %矩形四个角点
x2(indmax2) y2(indmax2);
x2(indmin2) y2(indmin2);
x1(indmin1) y1(indmin1)];
end
end
% pbar(5,:) = pbar(1,:);
end
if length(pcCluster(:,1))==2 % 只含两个点的情况
hull = pcCluster(:,1:2);
pbar = [pcCluster(1,1) pcCluster(1,2);
pcCluster(2,1) pcCluster(2,2);
pcCluster(2,1)+0.05 pcCluster(2,2)+0.05;
pcCluster(1,1)+0.05 pcCluster(1,2)+0.05;];
end
if length(pcCluster(:,1))==1 % 只含一个点的情况
hull = pcCluster(:,1:2);
pbar = [pcCluster(1,1) pcCluster(1,2);
pcCluster(1,1)+0.05 pcCluster(1,2);
pcCluster(1,1)+0.05 pcCluster(1,2)+0.05;
pcCluster(1,1) pcCluster(1,2)+0.05;];
end
% figure(2)
% plot(hull(:,1),hull(:,2),'.');
% hold on;
% plot([pbar(:,1); pbar(1,1)],[pbar(:,2); pbar(1,2)],'r')
% axis equal;
% hold off
end