《TensorFlow技术解析与实战》第12章 图像与语音的结合

本文介绍了如何使用TensorFlow构建看图说话模型,该模型基于编码器-解码器框架,结合Inception V3和LSTM。利用Microsoft COCO Caption数据集进行训练,并展示了模型对于图像描述的生成效果。
摘要由CSDN通过智能技术生成

斯坦福大学人工智能实验室的李飞飞教授在2017年极客大会上曾经讲过,实现人工智能要有3个要素:语法(syntax)、语义(semantics)和推理(inference),如图12-1所示。

图12-1

语言和视觉是人工智能界非常关注的点,也就是说,在语言和视觉层面,通过语法(对语言来说是语法解析,对视觉来说是三维结构的解析)和语义(对语言来说是语义,对视觉来说是物体动作的含义)作为模型的输入训练数据,最终实现推理的能力,也就是把训练中学习到的能力应用到工作中去,从新的数据中推断出结论。[1]

将图像和语言融合,就是“看图说话”。看图说话的目标是,输入一张图片,希望我们训练的看图说话模型能够根据图像给出描述图像内容的自然语言,讲出一个故事。这是一个很大的挑战,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人民邮电出版社有限公司

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值