快速幂与矩阵快速幂

引入

  • 在计算整数乘方问题时,如果我们使用朴素的方法,比如求Kn
    需要连续乘n-1次,有的时候,比如求2的一亿次方,需要的时间是较长的,使用pow函数也很慢,而一些问题又对时间有严格的要求,所以就要想办法改进

快速幂

  • 基于分治的思想,可以想到,如果要计算2的100次方,如果已经得到2的50次方,那么只需要两个2的50次方相乘即可,不需要再去乘50个2,基于这个想法,可以得到如下程序
  • 一般乘方运算都会得到一个很大的数,所以往往会取模
ll quickpow(ll base, ll power){
    ll ans = 1;
    while(power){
        if(power&1) ans = base * ans % MOD;
        base  = base * base % MOD;
        power >>= 1;
    }
    return ans % MOD;
}
  • 用它求解整数的n次幂是非常快的,远远超过pow函数,但这并不是说我们的快速幂优于pow,因为pow功能是非常强的,可以计算浮点数的情况等等,正因为它的功能强大,所以速度慢一些

例题

模板题
用模板题熟悉一下框架

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL mod;
LL fastpower(LL base,LL power){
	LL res=1;
	while(power){
		if(power&1) res=res*base%mod;
		base=base*base%mod;
		power>>=1;
	}
	return res%mod;
}
int main(){
	LL n,k;
	cin>>n>>k>>mod;
	printf("%lld^%lld mod %lld=%lld",n,k,mod,fastpower(n,k));
	return 0;
}
  • HDU1061也是容易的快速幂问题

矩阵快速幂

  • 矩阵快速幂将上面的底数转换成了矩阵,首先需要熟悉矩阵乘法
    矩阵乘法模板题
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 2e5 + 100;
int Data[MAXN];
int a[300][300], b[300][300], c[300][300];
int main(){
    int n;
    cin>>n;
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            cin>>a[i][j];
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            cin>>b[i][j];
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++){
            for(int k=0;k<n;k++){
                c[i][j] += a[i][k] * b[k][j];
            }
            cout<<c[i][j]<<' ';
        }cout<<endl;
    }
    return 0;
}
  • 掌握了矩阵乘法以后,设置一个结构体存储矩阵,按照快速幂框架求取即可
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 2e5 + 100;
const ll MOD = 1e9 + 7;
struct Matrix{
    ll m[105][105];
    Matrix(){
        memset(m, 0, sizeof m);
    }
};
Matrix mul(Matrix x, Matrix y, int n){
    Matrix ans;
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++){
            for(int k=0;k<n;k++){
                ans.m[i][j] = (ans.m[i][j] + x.m[i][k] * y.m[k][j]) % MOD;
            }
        }
    }
    return ans;
}
Matrix fastpow_Matrix(Matrix base, int power, int n){
    Matrix ans;
    for(int i=0;i<n;i++) ans.m[i][i] = 1;
    while(power){
        if(power&1) ans = mul(ans, base, n);
        base = mul(base, base, n);
        power >>= 1;
    }
    return ans;
}
  • 快速幂算法本身并不难,但是,这个算法往往会在某些问题中通过构建模型,起到加速作用,问题关键在于利用矩阵快速幂构建递推关系,从而快速求解,这是不容易的

例题

POJ 3070

  • 通过这个例子了解一下矩阵快速幂的用途,把Fibonacci数列转换为矩阵快速幂
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 2e5 + 100;
const int MOD = 10000;
int Data[MAXN];
struct Matrix{
    ll m[2][2];
    Matrix(){
        memset(m, 0, sizeof m);
    }
};
Matrix Mul(Matrix x, Matrix y, int n){
    Matrix ans;
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++){
            for(int k=0;k<n;k++){
                ans.m[i][j] = (x.m[i][k] * y.m[k][j]+ ans.m[i][j]) % MOD;
            }
        }
    }
    return ans;
}
Matrix fastpow_Matrix(Matrix base, int power, int n){
    Matrix ans;
    for(int i=0;i<n;i++) ans.m[i][i] = 1;
    while(power){
        if(power & 1) ans = Mul(ans, base, n);
        base = Mul(base, base, n);
        power >>= 1;
    }
    return ans;
}
int main(){
    int n;
    Matrix res, ans;
    while(scanf("%d", &n) && n != -1){
        res.m[0][0] = res.m[0][1] = res.m[1][0] = 1;
        res.m[1][1] = 0;
        if(n == 0) printf("0\n");
        else{
            ans = fastpow_Matrix(res, n, 2);
            printf("%lld\n", ans.m[1][0]);
        }
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clarence Liu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值