1. VAR
VaR, value at risk, 风险价值,表示金融产品在给定置信水平 α \alpha α 下的最大损失。用 X X X 表示该随机波动的金融产品损失值, F X ( x ) F_X(x) FX(x) 为其累计概率分布,则 VAR 的数学表示式为:
VaR α ( X ) = inf { t ∣ F X ( t ) ≥ α } \text{VaR}_\alpha(X)=\inf\{t\mid F_X(t)\geq \alpha\} VaRα(X)=inf{t∣FX(t)≥α}
或用概率表达式:
VaR
α
(
X
)
=
inf
{
t
∣
Pr
(
x
≤
t
)
≥
α
}
\text{VaR}_\alpha(X)=\inf\{t\mid \Pr(x\leq t)\geq \alpha\}
VaRα(X)=inf{t∣Pr(x≤t)≥α}
这些数学表达式有些抽象,在几何意义上,其实就是 X X X 概率分布的 α \alpha α 分位数,如下图所示:
- VAR 函数非凸
2. CVAR
CVaR, conditional value at risk. 表示金融产品在既定置信水平
α
\alpha
α 下,损失超过
V
a
R
α
VaR_\alpha
VaRα 的期望损失,有时候也称作 average value at risk (AVAR),或 Expected shortfall,数学表达式为:
C
V
a
R
α
=
∫
α
1
V
a
R
r
d
r
1
−
α
(1)
CVaR_\alpha=\frac{\int_\alpha^1 VaR_rdr}{1-\alpha}\tag{1}
CVaRα=1−α∫α1VaRrdr(1)
有时表达式为:
C
V
a
R
α
=
−
∫
0
α
V
a
R
r
d
r
α
(2)
CVaR_\alpha=-\frac{\int_0^\alpha VaR_rdr}{\alpha}\tag{2}
CVaRα=−α∫0αVaRrdr(2)
对于CVAR,Rockafellar 与 Uryasev 还提出了一个等价表达式:
C V a R α = t + 1 1 − α ∫ t ∞ ( z − t ) f ( z ) d z CVaR_\alpha=t+\frac{1}{1-\alpha}\int_t^\infty(z-t)f(z)dz CVaRα=t+1−α1∫t∞(z−t)f(z)dz
其中, t t t 就是 V a R α VaR_\alpha VaRα,而 z z z 为金融产品的损失值, f ( z ) f(z) f(z) 是它的概率密度函数。
几何意义上:就是对上图概率密度函数超过 V a R α VaR_\alpha VaRα的部分取积分得到面积,再除以 1 − α 1-\alpha 1−α。
- CVAR是关于 t t t 的凸函数
- CVAR表达式 (2) 与 α \alpha α 负相关, CVAR表达式 (1) 与 α \alpha α 正相关
- 看了不同的定义,到底是 α \alpha α 还是 1 − α 1-\alpha 1−α,是否加上负号,不同的版本挺乱的。具体要看这个分位数 α \alpha α 以及损失值这个随机变量 X X X 怎么定义的