VaR 与 CVaR

1. VAR

VaR, value at risk, 风险价值,表示金融产品在给定置信水平 α \alpha α 下的最大损失。用 X X X 表示该随机波动的金融产品损失值, F X ( x ) F_X(x) FX(x) 为其累计概率分布,则 VAR 的数学表示式为:

VaR α ( X ) = inf ⁡ { t ∣ F X ( t ) ≥ α } \text{VaR}_\alpha(X)=\inf\{t\mid F_X(t)\geq \alpha\} VaRα(X)=inf{tFX(t)α}

或用概率表达式:
VaR α ( X ) = inf ⁡ { t ∣ Pr ⁡ ( x ≤ t ) ≥ α } \text{VaR}_\alpha(X)=\inf\{t\mid \Pr(x\leq t)\geq \alpha\} VaRα(X)=inf{tPr(xt)α}

这些数学表达式有些抽象,在几何意义上,其实就是 X X X 概率分布的 α \alpha α 分位数,如下图所示:

在这里插入图片描述

  • VAR 函数非凸

2. CVAR

CVaR, conditional value at risk. 表示金融产品在既定置信水平 α \alpha α 下,损失超过 V a R α VaR_\alpha VaRα 的期望损失,有时候也称作 average value at risk (AVAR),或 Expected shortfall,数学表达式为:
C V a R α = ∫ α 1 V a R r d r 1 − α (1) CVaR_\alpha=\frac{\int_\alpha^1 VaR_rdr}{1-\alpha}\tag{1} CVaRα=1αα1VaRrdr(1)

有时表达式为:
C V a R α = − ∫ 0 α V a R r d r α (2) CVaR_\alpha=-\frac{\int_0^\alpha VaR_rdr}{\alpha}\tag{2} CVaRα=α0αVaRrdr(2)

对于CVAR,Rockafellar 与 Uryasev 还提出了一个等价表达式:

C V a R α = t + 1 1 − α ∫ t ∞ ( z − t ) f ( z ) d z CVaR_\alpha=t+\frac{1}{1-\alpha}\int_t^\infty(z-t)f(z)dz CVaRα=t+1α1t(zt)f(z)dz

其中, t t t 就是 V a R α VaR_\alpha VaRα,而 z z z 为金融产品的损失值, f ( z ) f(z) f(z) 是它的概率密度函数。

几何意义上:就是对上图概率密度函数超过 V a R α VaR_\alpha VaRα的部分取积分得到面积,再除以 1 − α 1-\alpha 1α

  • CVAR是关于 t t t 的凸函数
  • CVAR表达式 (2) 与 α \alpha α 负相关, CVAR表达式 (1) 与 α \alpha α 正相关
  • 看了不同的定义,到底是 α \alpha α 还是 1 − α 1-\alpha 1α,是否加上负号,不同的版本挺乱的。具体要看这个分位数 α \alpha α 以及损失值这个随机变量 X X X 怎么定义的

参考文献:12


  1. https://www.ise.ufl.edu/uryasev/files/2011/11/VaR_vs_CVaR_CARISMA_conference_2010.pdf ↩︎

  2. https://en.wikipedia.org/wiki/Expected_shortfall ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值