本文是以 The Dao of Robustness 中的 Allias Paradox 为例子,整理一下在离散概率分布情况下 VaR 和 CVaR 的计算,加深对这两个指标的理解。
1. Allias悖论
有以下四种博彩:
A:确定赢 1 美金;
B:1%的概率一无所获,10%的概率赢 5 美金,89%的概率赢 1 美金;
C:89%的概率一无所获,11%的概率赢 1 美金;
D: 90%的概率一无所获,10%的概率赢 5 美金。
根据期望效用理论,可能的偏好关系是 A ≻ B , C ≻ D A\succ B, C\succ D A≻B,C≻D 或者 B ≻ A , D ≻ C B\succ A, D\succ C B≻A,D≻C,而无法推导出 A ≻ B , D ≻ C A\succ B, D\succ C A≻B,D≻C 或者 B ≻ A , C ≻ D B\succ A, C\succ D B≻A,C≻D.
2. VaR的计算
回忆VaR的定义: V a R P , ϵ ( r ~ ) = inf w { w ∣ P [ − r ~ ≤ w ] ≤ 1 − ϵ } VaR_{\mathbb{P},\epsilon}(\tilde{r}) = \inf_{w} \left\{w \big| \mathbb{P}[-\tilde{r}\leq w]\leq 1-\epsilon\right\} VaRP,ϵ(r~)=winf{ w∣∣P[−r~≤w]≤1−ϵ} 以 B B B 的计算为例(考虑其损失 − r ~ -\tilde{r} −r~ 的分布):
− 5 -5 −5 | − 1 -1 −1 | 0 0 0 |
---|---|---|
0.1 | 0.89 | 0.01 |
计算可得(将分布值由低到高排序,然后反向计算其概率值的累加和)
V a R ϵ ( B ) = { 0 , ϵ < 0.01 − 1 , 0.01 ≤ ϵ < 0.9 − 5 , ϵ ≥ 0.9 VaR_{\epsilon}(B) = \begin{cases} 0, & \epsilon<0.01 \\ -1, & 0.01\leq\epsilon<0.9 \\ -5, & \epsilon\ge 0.9 \end{cases} VaRϵ