VaR and CVaR of Allais Paradox

本文是以 The Dao of Robustness 中的 Allias Paradox 为例子,整理一下在离散概率分布情况下 VaR 和 CVaR 的计算,加深对这两个指标的理解。

1. Allias悖论

有以下四种博彩:
A:确定赢 1 美金;
B:1%的概率一无所获,10%的概率赢 5 美金,89%的概率赢 1 美金;
C:89%的概率一无所获,11%的概率赢 1 美金;
D: 90%的概率一无所获,10%的概率赢 5 美金。

根据期望效用理论,可能的偏好关系是 A ≻ B , C ≻ D A\succ B, C\succ D AB,CD 或者 B ≻ A , D ≻ C B\succ A, D\succ C BA,DC,而无法推导出 A ≻ B , D ≻ C A\succ B, D\succ C AB,DC 或者 B ≻ A , C ≻ D B\succ A, C\succ D BA,CD.

2. VaR的计算

回忆VaR的定义: V a R P , ϵ ( r ~ ) = inf ⁡ w { w ∣ P [ − r ~ ≤ w ] ≤ 1 − ϵ } VaR_{\mathbb{P},\epsilon}(\tilde{r}) = \inf_{w} \left\{w \big| \mathbb{P}[-\tilde{r}\leq w]\leq 1-\epsilon\right\} VaRP,ϵ(r~)=winf{ wP[r~w]1ϵ} B B B 的计算为例(考虑其损失 − r ~ -\tilde{r} r~ 的分布):

− 5 -5 5 − 1 -1 1 0 0 0
0.1 0.89 0.01

计算可得(将分布值由低到高排序,然后反向计算其概率值的累加和)
V a R ϵ ( B ) = { 0 , ϵ < 0.01 − 1 , 0.01 ≤ ϵ < 0.9 − 5 , ϵ ≥ 0.9 VaR_{\epsilon}(B) = \begin{cases} 0, & \epsilon<0.01 \\ -1, & 0.01\leq\epsilon<0.9 \\ -5, & \epsilon\ge 0.9 \end{cases} VaRϵ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zte10096334

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值