见到北京大学的数学分析专业期末考试题,发现一道都不会做。试题不算太难,很多数学技巧不知道或忘记了。有一道数列收敛性试题。
a
n
=
1
+
2
+
3
+
⋯
+
n
n
n
n
n
a_n=\sqrt[n]{1+\sqrt[n]{2+\sqrt[n]{3+\dots+\sqrt[n]{n}}}}
an=n1+n2+n3+⋯+nn
解:收敛性需要放大或缩小,将其放大
a
n
≤
n
+
n
+
n
+
⋯
+
n
n
n
n
n
a_n\leq \sqrt[n]{n+\sqrt[n]{n+\sqrt[n]{n+\dots+\sqrt[n]{n}}}}
an≤nn+nn+nn+⋯+nn
利用一个性质:
n
+
2
n
<
2
\sqrt[n]{n+2}< 2
nn+2<2
因此,从右面最里层往外递推:
a
n
≤
n
+
2
n
a_n\leq \sqrt[n]{n+2}
an≤nn+2
显然
a
n
≥
1
a_n\geq 1
an≥1,根据夹逼定理,当
n
→
∞
n\rightarrow\infty
n→∞ 时,
a
n
→
1
a_n\rightarrow 1
an→1