定义1
给定一个数列 ,对它的各项依次用“+”号连接起来的表达式
称为常数项无穷级数或数项级数(也常简称级数),其中 称为数项级数(1)的通项或一般项。
数项级数(1)也常写作 或简单写作
.
数项级数(1)的前n项之和,记为 称它为数项级数(1)的第n个部分和,也简称部分和。
定义2
若数项级数(1)的部分和数列 收敛于S(即
),则称数项级数(1)收敛,称S为数项级数(1)的和,记作
或
.
若 是发散数列,则称数项级数(1)发散。
定理1(级数收敛的柯西准则)
级数(1)收敛的充要条件是: 当m>N以及对任意的正整数p,都有
级数(1)发散的充要条件是: 有
推论:若级数(1)收敛,则
(逆命题不成立;但逆否命题成立,即若 则级数(1)发散)
定理2
如级数 与
都收敛,则对任意常数c,d,级数
亦收敛,且
补充:若 非负,则
发散。
若 发散,
不一定发散。
定理3
去掉、增加或改变级数的有限个项并不改变级数的敛散性。
由此定理知道,若级数 收敛,其和为S,则级数
也收敛,且其和
式称为级数 的第n个余项(或简称余项),它表示以部分和
代替S时所产生的误差。
定理4
在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。(逆否命题成立,即若加了括号的级数发散,则原级数发散)
注意:从级数加括号后的收敛,不能推断它在未加括号前也收敛。例如(1-1)+(1-1)+...+(1-1)+...=0+0+0+...=0收敛,但级数1-1+1-1+...却是发散的。
典题:
1.等比级数(也称为几何级数)
当 时,等比级数收敛;当 时,
等比级数发散。
2.调和级数1+1/2+1/3+...+1/n+... 是发散的。
3.级数 收敛。
数项级数——(一)级数的收敛性
最新推荐文章于 2024-06-23 20:10:37 发布