数项级数——(一)级数的收敛性

定义1

给定一个数列\{u_n\} ,对它的各项依次用“+”号连接起来的表达式
u_1+u_2+...+u_n+...
 称为常数项无穷级数或数项级数(也常简称级数),其中u_n 称为数项级数(1)的通项或一般项。

数项级数(1)也常写作 \sum_{n=1}^{\infty }u_n或简单写作\sum u_n .

数项级数(1)的前n项之和,记为 S_n=\sum_{k=1}^{n}u_k=u_1+u_2+..+u_n.称它为数项级数(1)的第n个部分和,也简称部分和。

定义2

若数项级数(1)的部分和数列 \{S_n\}收敛于S(即\lim_{n\to\infty }S_n=S ),则称数项级数(1)收敛,称S为数项级数(1)的和,记作S=u_1+u_2+...+... 或S=\sum u_n .

若 \{S_n\}是发散数列,则称数项级数(1)发散。

定理1(级数收敛的柯西准则)

级数(1)收敛的充要条件是:\forall \varepsilon >0,\exists N>0, 当m>N以及对任意的正整数p,都有 
\left | u_{m+1}+u_{m+2}+...+u_{m+p} \right |<\varepsilon .
级数(1)发散的充要条件是: \exists \varepsilon _0,\forall N>0,\exists m_0>0(m_)>N),\exists >p_0有 
\left | u_{m_0+1}+u_{m_0+2}+...+u_{m_0+p_0} \right |\geqslant \varepsilon _0.
推论:若级数(1)收敛,则 
\lim_{n\to\infty }u_n=0.
(逆命题不成立;但逆否命题成立,即若\lim_{n\to \infty}u_0\neq 0 则级数(1)发散)

定理2

如级数 \sum u_n与 \sum v_n都收敛,则对任意常数c,d,级数\sum(cu_n+dv_n) 亦收敛,且 \sum(cu_n+dv_n)=c\sum u_n+d\sum v_n.

补充:若 u_n,v_n(n=1,2,...)非负,则 \sum(u_n+v_n)发散。

u_n,v_n 发散, \sum(u_n+v_n)不一定发散。

定理3

去掉、增加或改变级数的有限个项并不改变级数的敛散性。

由此定理知道,若级数 \sum_{n=1}^{\infty}u_n收敛,其和为S,则级数 u_{n+1}+u_{n+2}+...也收敛,且其和R_n=S-S_n.  u_{n+1}+u_{n+2}+... 式称为级数 的第n个余项(或简称余项),它表示以部分和S_n 代替S时所产生的误差。

定理4

在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。(逆否命题成立,即若加了括号的级数发散,则原级数发散)

注意:从级数加括号后的收敛,不能推断它在未加括号前也收敛。例如(1-1)+(1-1)+...+(1-1)+...=0+0+0+...=0收敛,但级数1-1+1-1+...却是发散的。

典题

1.等比级数(也称为几何级数) 
a+aq+aq^2+...+aq^n+...
\left | q \right |<1 时,等比级数收敛;当 时,\left | q \right |\geqslant 1等比级数发散。

2.调和级数1+1/2+1/3+...+1/n+... 是发散的。

3.级数 \sum\frac{1}{n^2}收敛。

  • 7
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值