证明 总偏差平方和 = 回归平方和 + 残差平方和

本文详细解析了线性回归中总偏差平方和如何分解为回归平方和与残差平方和,通过数学推导证明了这一核心性质,对于理解模型拟合程度及其评估指标具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性回归中有这样一条性质:
总偏差平方和 ( S S T ) = 回归平方和( S S R ) + 残差平方和( S S E ) 总偏差平方和 (SST) = 回归平方和(SSR) + 残差平方和(SSE) 总偏差平方和(SST)=回归平方和(SSR+残差平方和(SSE

即:
∑ ( y i − y ‾ ) 2 = ∑ ( y ^ i − y ‾ ) 2 + ∑ ( y i − y ^ i ) 2 (1) \sum(y_i-\overline y)^2=\sum(\hat y_i-\overline y)^2+\sum(y_i-\hat y_i)^2\tag{1} (yiy)2=(y^iy)2+(yiy^i)2(1)

证明:下面以一元回归为例证明。
∑ ( y i − y ‾ ) 2 = ∑ ( y i − y ^ i + y ^ i − y ‾ ) 2 = ∑ ( y i − y ^ i ) 2 + ∑ ( y ^ i − y ‾ ) 2 + 2 ∑ ( y i − y ^ i ) ( y ^ i − y ‾ ) \begin{aligned} \sum(y_i-\overline y)^2&=\sum(y_i-\hat y_i+\hat y_i-\overline y)^2\\ &=\sum(y_i-\hat y_i)^2+\sum(\hat y_i-\overline y)^2+2\sum(y_i-\hat y_i)(\hat y_i-\overline y)\\ \end{aligned} (yiy)2=(yiy^i+y^iy)2=(yiy^i)2+(y^iy)2+2(yiy^i)(y^iy)

因此,我们需要证明 ∑ ( y i − y ^ i ) ( y ^ i − y ‾ ) = 0 \sum(y_i-\hat y_i)(\hat y_i-\overline y)=0 (yiy^i)(y^iy)=0.

∑ ( y i − y ^ i ) ( y ^ i − y ‾ ) = ∑ ( y i − y ^ i ) y ^ i − y ‾ ∑ ( y i − y ^ i ) (2) \begin{aligned} \sum(y_i-\hat y_i)(\hat y_i-\overline y)&=\sum(y_i-\hat y_i)\hat y_i-\overline y\sum (y_i-\hat y_i)\\ \end{aligned}\tag{2} (yiy^i)(y^iy)=(yiy^i)y^iy(yiy^i)(2)

根据最小二乘法,若回归方程为: y = β 0 + β 1 x y=\beta_0+\beta_1x y=β0+β1x,优化目标是使得 f = ∑ ( y i − β 0 − β 1 x i ) 2 f=\sum (y_i-\beta_0-\beta_1x_i)^2 f=(yiβ0β1xi)2最小,通过令一阶导数 f f f 为零计算 β 0 , β 1 \beta_0, \beta_1 β0,β1
∂ f ∂ β 0 = − 2 ∑ ( y i − β 0 − β 1 x i ) = 0 \begin{aligned} \frac{\partial f}{\partial \beta_0}=-2\sum(y_i-\beta_0-\beta_1x_i)=0 \end{aligned} β0f=2(yiβ0β1xi)=0
由于 y ^ i = β 0 + β 1 x i \hat y_i=\beta_0+\beta_1x_i y^i=β0+β1xi,所以
∑ ( y i − y ^ i ) = 0 (3) \sum (y_i-\hat y_i)=0\tag{3} (yiy^i)=0(3)

又因为:
∂ f ∂ β 1 = − 2 ∑ x i ( y i − β 0 − β 1 x i ) = 0 \begin{aligned} \frac{\partial f}{\partial \beta_1}=-2\sum x_i(y_i-\beta_0-\beta_1x_i)=0 \end{aligned} β1f=2xi(yiβ0β1xi)=0

所以,
∑ ( β 0 + β 1 x i ) ( y i − β 0 − β 1 x i ) = ∑ y ^ i ( y ^ i − y i ) = 0 (4) \sum (\beta_0+\beta_1x_i)(y_i-\beta_0-\beta_1x_i)=\sum\hat y_i(\hat y_i-y_i)=0\tag{4} (β0+β1xi)(yiβ0β1xi)=y^i(y^iyi)=0(4)

综合表达式 (2),(3),(4),表达式(1)成立。因此:
总偏差平方和 ( S S T ) = 回归平方和( S S R ) + 残差平方和( S S E ) 总偏差平方和 (SST) = 回归平方和(SSR) + 残差平方和(SSE) 总偏差平方和(SST)=回归平方和(SSR+残差平方和(SSE
□ \Box

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值